GEOtop Users Manual

EDITION BY:

Dr Stefano Endrizzi¹ Dr Matteo Dall'Amico² Dr Stephan Gruber¹ Prof Riccardo Rigon³

- 1: Department of Physical Geography, University of Zurich (Switzerland)
- 2: Mountain-eering S.r.l., Via Siemens 19 Bolzano (Italy)
- ³: Department of Civil and Environmental Engineering, University of Trento (Italy)

User Manual Version 1.0

Contents

1	Intr	oduction	3
	1.1	What is GEOtop	3
	1.2	History	4
		1.2.1 GEOtop 0.5	5
		1.2.2 GEOtop 0.75	8
		1.2.3 GEOtop 0.875	9
		1.2.4 GEOtop 0.9375	10
		1.2.5 Stefano Endrizzi's work	11
		1.2.6 GEOtop in Zurich	12
		1.2.7 Future perspectives	12
2	Com	piling Instructions	13
	2.1	Compile GEOtop through a makefile	13
3	Basi	c theory	15
	3.1	The calculation grid	15
		3.1.1 Planar grid	15
		3.1.2 Vertical grid	15
	3.2	The domain characterization	17
		3.2.1 Land cover	17
		3.2.2 Soil type	18
		3.2.3 The final 3D calculation grid	18
	3.3	The focus on some points	18
	3.4	Meteorological forcing	21
		3.4.1 Meteo station	21
		3.4.2 Meteo data	22
		3.4.3 Cloudiness	22
		3.4.4 Lapse rates	22

ii CONTENTS

4	Sim	ulation flow chart	27
	4.1	User point of view	27
	4.2	1D simulations	27
		4.2.1 Point horizon	28
		4.2.2 1D simulations: with or without maps	30
		4.2.3 1D simulations in steep topography	30
	4.3	Model point of view	30
	4.4	How to Run GEOtop	32
		4.4.1 From Terminal	32
5	I/O	scheme: the keywords	33
	5.1	Keywords syntax	33
		5.1.1 Keywords definition	34
		5.1.2 Dates and time	35
	5.2	Keywords properties	35
6	1D:	domain definition and characterization	39
	6.1	Without maps	39
	6.2	With maps	41
7	3D:	domain definition and characterization	43
	7.1	Planar domain definition	43
	7.2	Z-coordinate domain definition	43
	7.3	Topographical characterization	43
	7.4	Land cover and soil depth characterization	44
	7.5	Output	44
8	Gen	neral features	47
	8.1	Input	47
		8.1.1 File	47
		8.1.2 Parameters	47
	8.2	Output	48
		8.2.1 Maps parameters	48
9	Met	reo Forcing	49
	9.1	Input	49
		9.1.1 Files	49
		9.1.2 Parameters for meteo station	49
		9.1.3 Headers for meteo station	50
		9.1.4 Parameters for meteo forcing	50

CONTENTS iii

		9.1.5	Headers for meteo forcing	51
	9.2	Spatial	distribution of meteorological forcing	52
		9.2.1	Parameters	52
	9.3	Output		53
		9.3.1	Point	53
		9.3.2	Maps	55
10	CI	•		
10	Glac			57
	10.1	_		
	40.0		Parameters	
	10.2	_		
			Point output	
		10.2.2	Map Output	60
11	Snov	V		61
	11.1	Input .		61
		11.1.1	Parameters	61
	11.2	Output		63
		_	Point output	
			Map Output	
12		tation		67
	12.1	_		
			Parameters	
	12.2	Numer	ics	67
	12.3	Output		68
		12.3.1	Point	68
		12.3.2	Map Output	71
13	Surfa	ace Flux	xes	73
	13.1	Input.		73
		•	Parameters	
	13.2		ics	
	13.3		Point	
			Maps	
	13 /		of reference	78
	1.7.4	vaiii.	VI INTOTOTOTO	/ ()

iv CONTENTS

14	Soil/	Rock In	nfiltration			81
	14.1	Input .		 		81
		14.1.1	File	 		81
		14.1.2	Headers	 		81
		14.1.3	Parameters	 		81
	14.2	Output	t	 		83
		14.2.1	Point output	 		83
		14.2.2	Map Output	 		84
		14.2.3	Map names	 		85
		14.2.4	Tensor names	 		85
15	Soil/	rock ten	mperature			87
	15.1	Input .		 		87
		15.1.1	File	 		87
		15.1.2	Headers	 		87
		15.1.3	Parameters	 		87
	15.2	Output	t	 		88
		15.2.1	Point output	 		88
		15.2.2	Map Output	 		89
		15.2.3	Map names	 		90
		15.2.4	Tensor names	 	•	90
16	Discl	harge at	at the outlet			91
	16.1	Input .		 		91
	16.2	Output	t	 		92
		16.2.1	Point	 	•	92
17	Basin	n synthe	netic outputs			93
	17.1	Output	t	 		93
		17.1.1	Files	 		93
		17.1.2	Parameters	 		93
		17.1.3	Headers	 		94
18	Bour	ndary ar	and Initial Conditions			97
	18.1	Bounda	lary Conditions	 		97
		18.1.1	Energy balance equation	 		97
			Water balance equation			97
	18.2	Initial C	Conditions	 		98
		18.2.1	Snow	 		98
		18.2.2	Glacier			98

		18.2.3	Soil / Rock
19	Tem	plates	101
	19.1	1D sim	ulation
		19.1.1	Parameter file: geotop.inpts
		19.1.2	Input files
		19.1.3	Output files
	19.2	3D dist	cributed simulation
		19.2.1	Parameter file
		19.2.2	Input maps and files
		19.2.3	Outputs
Re	feren	ces	122

CONTENTS

Chapter 1

Introduction

1.1 What is GEOtop

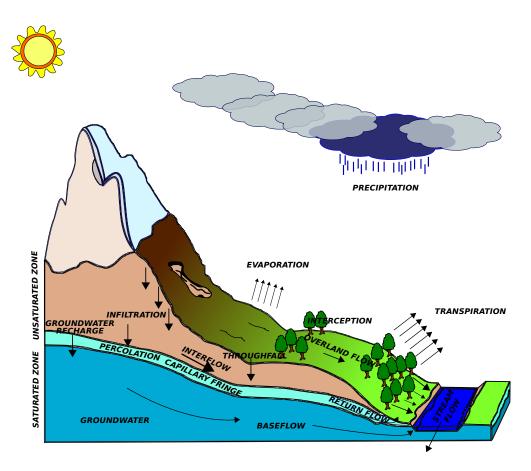


Figure 1.1: The water cycle

Many hydrological models, commercial and research research oriented, allow to analyze the water and energy exchanges between the soil and the low atmosphere. However, often the models treat accurately only some aspects of the water cycle, i.e. the run-off or the boundary layer, and study the other parts in an approximate way. GEOtop (*Rigon et al.*, 2006), on the other hand, is a physically based distributed hydro-

1. Introduction 1.2. History

logical model that analyzes the complete water cycle in a catchment. The model is conceived to deal with complex topographies, as it provides each grid point of the domain with the topographical characteristics of the basin (elevation, slope, aspect, shadow, sky view factor). The soil/rock thermal and hydraulic characteristics are given in input in form of maps, together with a vertical description of the layers to account for heterogeneous stratigraphies. The vegetation and soil cover features may also be specified in form of maps. The meteorological data, collected in one or more points in the catchment, are spatially distributed to each grid point thanks to the *Micromet* model (*Liston and Elder*, 2006). Then the model calculates the energy and mass balance in the catchment through a 3D solver for Richards' equation (*Endrizzi et al.*, submitted) and a 1D solver for the energy equation (*Dall'Amico et al.*, 2011a). The vegetation is treated according to a double layer scheme (*Endrizzi and Marsh*, 2010), that allows to separate the contribution of vegetation and of the surface on the turbulent fluxes. The snow module, originally implemented with a monolayer scheme (*Zanotti et al.*, 2004), now calculates accumulation and melting through a multilayer discretization of the snowpack (*Endrizzi*, 2007). Recently the model has been enriched with a *blowing snow* module, based on *Pomeroy et al.* (1993) e *Essery et al.* (1999) contributions, that allows to account the accumulation and scour due to the wind action. GEOtop represents a useful tool to simulate:

- the soil water content (*Gebremichael et al.*, 2009)
- the evaporation of the soil (*Bertoldi et al.*, 2006, 2010);
- the transpiration of the vegetation (*Endrizzi and Marsh*, 2010);
- the snow in a catchment (Zanotti et al., 2004; Endrizzi, 2007; ?; Dall'Amico et al., 2011b);
- the surface temperature in a basin (*Bertoldi et al.*, 2010);
- the temperature in the soil/rock also under freezing conditions (*Dall'Amico*, 2010);
- the glacier mass balance (*Noldin et al.*, 2010);
- the water table and thaw depth interactions (*Endrizzi et al.*, submitted);
- and the water discharge in an outlet (*Rigon et al.*, 2006)

1.2 History

GEOtop concise history up to the first public release - by Riccardo Rigon

"As scientists we are intrigued by the possibility of assembling our knowledge into a neat package to show that we do, after all, understand our science and its complex interrelated phenomena." (W.M., Kohler, 1969).

1.2. History 1. Introduction

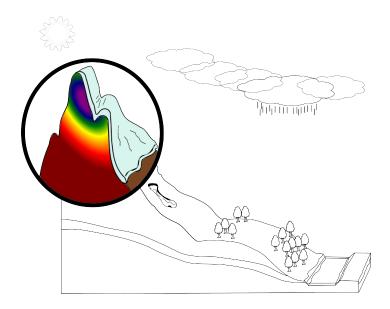


Figure 1.2: Cryosphere: snow, glacier, permafrost

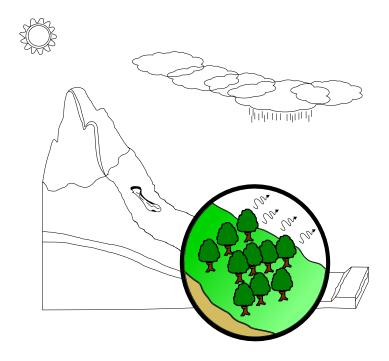


Figure 1.3: Vegetation and surface fluxes

1.2.1 **GEOtop 0.5**

The first version of GEOtop (0.5) was mostly financed by the Autonomous Province of Trento through the Serraia project and by the Italian Ministry of Research and University through the Cofin 1999 project. The very first step was due to the reading of the Entekhaby review of moddling the whole hydrological cycle [e.g. - Marani and Rigon (eds), 1997], and started with the master thesis of Paolo Verardo and his

1. Introduction 1.2. History

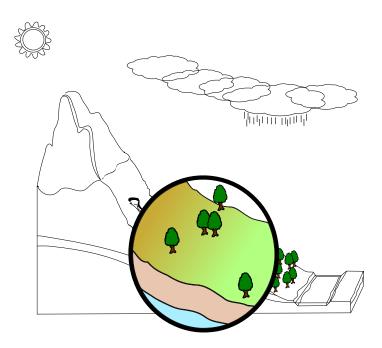


Figure 1.4: Soil: infiltration, water content, discharge

subsequent work in 1998. Around a year was spent to implement a decent model for evapotranspiration in a complex terrain environment, according to the Penman-Monteith (PM) schematization, and all the necessary incoming radiation treatments. Especially the view angle and the shadowing routine were delicate to implement. The problem of data assimilation and regionalization (at that time the only data we had were those coming from traditional hydro-meteorological stations and we do not have many of them) was face for the first time. Apart from the geomorphological data that we extract from DEMs (the "sine qua non" basis of all the work) we had to regionalize: air-surface temperature (varying obviously with the elevation of the terrain), net radiation (that has to be first derived from that at the atmosphere top by the evaluation of an atmospheric thickness which has to be regionalized too) and wind speed. In sequence it was decided decided to use: kriging techniques and the hypothesis of adiabatic temperature profile (for air temperature); Brutsaert [1983] paper results (for atmosphere emissivity) and constant (or kriged) wind speed everywhere.

The heat conduction into the ground was parametrized as a linear combination of a sinusoidal function as Entekhaby suggested [1997] (this has been eventually changed). That work was also inspired by the routines of IPW (Image Processing Workbench) [Frew, 1990]. Actually it was tried to get IPW working: but its pervasive scripting base (scripting is good but there is a point after which it makes the code organization unclear), the discontinued support and ignorance of IPW code internals, led to built a new system from the scratch.

Despite of the approximations introduced, GEOtop 0.5 model worked fairly well in estimating the net longwave and shortwave radiation in any point across a basin and at any hour of the day, and could give also reliable estimates of the potential evapotranspiration on a daily basis. However to obtain the real evapotranspiration was a different question (and, obviously, to validate it, eve a different one). Marco Pegoretti

1.2. History 1. Introduction

[1999] added to the evapotranspiration modules a rainfall-runoff model (temporary called GEOMODEL). The approach to the problem of rainfall-runoff was strongly influenced by the work of Rodriguez-Iturbe and Valdes [1979] and Gupta et al [1980], and I was reluctant to abandon the simplicity of a GIUH-based model in favor of a fully distributed model.

Of the many ideas behind the theory of the GIUH there is the observation that the river basin is a complex system (an interplay of hillslopes and channels) but, at least for the forecasting of floods, just a simple model works leading to the conclusion that dynamics works in simplifying statistically the complexity and the heterogeneity underneath.

The big problem in the GIUH approach however was (and is) the determination of the effective rainfall, i.e. the correct separation of surface runoff (interpreted as the cause of the flood surge) from subsurface flow (which must be actually treated separately and routed to the channels in a slower way), especially in dependence of storm events of diverse intensity, duration and inter-arrival time.

A model more or less contemporary to the GIUH is the TOPMODEL by Beven and Kirkby [1979]. It is based on the paradigm that runoff production is due to saturated areas (according to Dunne and Black, 1970). Thus, once one knows which areas are saturated and describes their growing during an event, the problem of the runoff coefficient is almost solved while routing of water to an outlet can be accomplished by some simple mechanism (the Muskingum-Cunge model at least in the original papers). Thus, an idea could have been to merge the best of the two formulations, the GIUH concept with the TOPMODEL. However the hypothesis on which the TOPMODEL has been based, mainly the stationarity of the hillslope subsurface fluxes, in one way simplifies the life of the modeler, but on the other is from many points of view a limitation which needs several work-around as described in Beven et al., [2002]. In fact, when the final goal is not simply the production of a well-fitted flood wave, but for instance the estimation of local soil moisture contents, the TOPMODEL fails to be precise enough [e.g., Grayson and Wilson, 2002].

Furthermore, the parameters entering the model become "effective" parameters and lose their original physical significance (for instance, the hydraulic conductivity cannot be validated by local field measurements), and need to be "calibrated" ex-post. Other limitations will be mentioned below when talking about the GEOTP 0.875 version. In any case, the TOPMODEL concept has been demonstrated to be a good tool to model floods in small-to-medium catchments, and has been considered the reference hydrological model for many of the researchers during the '90s. The TOPMODEL's ability to forecast floods derives also from its account (trivial indeed) of the topology and geometry of small- catchment flow paths: it was shown, in fact, that in small watersheds (up to at least 1000 square kilometers), hillslope residence time dominates the characteristic time of flood formation and that topology and geometry of river basins are sufficient with very minimalist dynamics to explain the shape of floods [Rinaldo et al, 1991; Rigon et al, 1996, Rinaldo et al., 1995, D'Odorico, 1996; D'Odorico and Rigon, 2003]. Thus, it was decided to build completely new subsurface and surface models, still driven by gravity (i.e. by slope as the TOPMODEL and not by the total hydraulic head) but, as a first approximation to the final wishes, introducing the buffer to cope with infiltration into the vadose zone. Subsurface flow was produced only by the saturated layer (including the capillary fringe), if present, and lateral surface runoff was routed as a kinematic wave (and through

1. Introduction 1.2. History

Manning/Gauckler-Strikler equation for velocities).

In doing this, it was searched a better characterization of flow paths, with reference to the bedrock, instead of to the surface topography [see McDonnell et al., 1996]: this could be done by measuring soil depth or interpolating it for instance as in [Heimsath et al, 1997 or Roering et al, 1999; please see the overlooked Bertoldi et al, 2006 for the details].

In this separation of surface and subsurface fluxes, GEOtop 0.5 was similar to the grid bases THALES [Grayson et al., 1994a,1994b] or the more recent NEWTHALES. At first, the version of GEOtop by Verardo-Pregoretti-Rigon (GEOTOP 0.5) could work without an explicit channel routing assigning a locally variable roughness and hydraulic radius; usually, however, channels were determined by accurate topographic analysis and explicitly treated. Channels routing was performed by a GIUH theory as in Rinaldo et al [1995], where channel celerity and hydrodynamic dispersion were considered spatially uniform and constant in time.

Instead of the effective rainfall, the spatially an temporally distributed input to channels was produced by GEOtop, i.e. the GEOMODEL produced patterns of spatially distributed soil moisture, and these patterns were used to reduce the potential evapotranspiration to its real counterpart as described in Bertoldi et al., [2002].

1.2.2 **GEOtop 0.75**

(mostly financed by COFIN 2001, THARMIT Eu Project, CUDAM - CofinLab 2001, ASI 54/2000)

The use of PM equation for evapotranspiration was indeed unsatisfactory from many points of view. For instance, it depends on air temperature that was derived from interpolation, and it was envisioned that the parametrization of fluxes into the ground, sensitive both to the ground cover and to the water content, could be modeled directly, haven as a result that many of the variables and parameters that were known to be correlated were actually treated separately.

Thus, with the Master thesis of Giacomo Bertoldi[2000] wit was decided throw away the PM equation (actually we kept it for comparison), and to solve directly the energy balance in any point of the basin. This was the birth of GEOTOP 0.75 which is thoroughly documented in Bertoldi et al[2002a,b] and Rigon et al [2002]. It was actually a SVAT model plus an rainfall-runoff model coupled together. GEOtop needed several parameters to be run, however the modeling could have been considered parsimonious, if all the prognostic capabilities were to be considered. The user could switch-off the SVAT part and have a parametrically parsimonious rainfall-runoff model, or vice-versa she can switch-off the rainfall-runoff model and have a reasonably simple SVAT model. Large efforts were done in cleaning the old code and improving the input-outputs. Credits must be given to the work of Liang et al. [1994] with their work on VIC (which is however parametrized to work at much larger scales) and on Wigmosta et al. [1994] whose model is very similar to the version 0.75 of GEOtop (but was mostly a case of evolutionary convergence since the comparison came after the GEOtop implementation). From the beginning, the model was used to forecast the whole hydrological cycle, even if a reasonable snow modeling still had to arrive. We were looking also to other topics. Eco-hydrology was, in fact, a research thread whose seeds where already in Rodriguez-

1.2. History 1. Introduction

Iturbe's mind when I was working with him at the Texas A&M University (1994-1996) and of which I was concerned from the beginning of the project.

Ecohydrology [Rodriguez-Iturbe, 2000] has roots in the work of Eagleson [1978, 2003], Phili, Brutsaert, Hillel [1990], and others and is one of the hot issues in these hydrological decades [Rodriguez-Iturbe, 2000].

For validation of the modules, a key role in this had Tom Over who, besides giving a lot of suggestions making the concepts behind the model clear, suggested to use the South Great Planes 97 experiment data set, thing that we promptly did as it appears in the first journal paper about the model Rigon et al., 2006).

Based partially on GEOtop 0.75 (and on the subsequent GEOtop 0.875) came all the work by Reza Entezarolmahdi who tried first to create an automatic calibration system for the model. This actually used MOSC-EM [CITATIONS] which, however was never really integrated in the model. The work of Reza was really interesting for many point of view, but probably a little advanced with respect to times and finished to a dead-end from which we hope to resume it sometimes in the very next future.

1.2.3 **GEOtop 0.875**

(mostly financed by TIDE EU Project, CUDAM Cofinlab COFIN 2001, THARMIT EU project)

This version finally contained a snow accumulation and melt model (derived by the Utah Energy Balance -UEB- by Tarboton and Luce, [1992]) implemented by Fabrizio Zanotti [2003] with the help of Giacomo Bertoldi . It also included a post-processor, the S-FACTOR , which performed a landslide and debris-flow triggering implemented by Christian Tiso [2003] (eventually evaluated into GEOtop-SF by Silvia Simoni). Both the implementations were the outcome of two M.S. thesis. Snow-melting and soil freezing are essential components in the hydrological cycle of mountain catchments and cannot not be overlooked. Landslide and debris-flow triggering are also an issue with particular relevance in mountains areas, such that floods in mountain areas are usually the combined effect of large liquid and solid discharges whose effects cannot be separated: GEOtop with this version started to a tool for studying these phenomena.

However, with the version 0.875, we wanted to attack the problem of a sound hillslope-hydrology modeling.

So far, our understanding of mountain catchments in fact was based on hillslope hydrology, as reviewed for instance in Wipkey and Kirkby [1978], and the "perceptual" hillslope model that we had at that time derived from the assumption that it was possible to neglect the transients in the water fluxes [in the sense clarified in Iverson, 2000]; that topographic gradients dominate the hydrologic response; that hydraulic conductivity strongly decreases with depth in the soil and, not independently, that runoff occurs mostly owing to saturation excess. This last assumption in turn was based upon the results of a long series of experiments from the late seventies on by American geomormologists (Dunne, Black, Dietrich, Montgomery, Torres), and was supported by many others (among these: Moore, Grayson, Sivapalan, Wood). These experiments and subsequent research activities changed the belief spread by Horton that runoff was mostly due to the infiltration excess mechanism. Developing hydrological models based on saturation excess ideas (which involved further simplification) originated a series of rainfall-runoff models among which the already cited

1. Introduction 1.2. History

TOPMODEL [Beven and Kirkby,1979; Sivapalan et al, 1991; Franchini et al, 1996] is the most successful product.

There are many aspects that could be improved with respect with that model. For instance, in characterizing the subsurface flow field more in terms of total head, even if in simplified form as in Iverson [2000], than in terms of the topographic gradient, as a first step toward the integration of the three dimensional Richards equation. These steps were implemented by the master thesis of Davide Tamanini [2003] that made GEOtop able to simulate transient subsurface flow, and both saturation excess and infiltration excess runoff. A first parameterization of the soil water retention curves was also implemented in the model. It is this code that was used in the first journal papers on GEOtop (Zanotti et al., 2004, Rigon et al., 2006, Bertoldi et al., 2006). Upon this code was based the work by Silvia Simoni, helped by Fabrizio Zanotti which produced the GEOtop-SF postprocessor that was able to estimate statistics of the stability of a hillslope. This work, in turn, produced Simoni Ph.D. thesis and Simoni et al., [2008].

In GEOtop 0.875 the integration of Richards equation followed a custom numerical scheme that was exceedingly complicate and non standard. Moreover, the integration scheme was not fully 3D, but could have been defined 2D + 1D, where "2D" stands for the lateral flow, obtained by using the Darcy Buckingham law, and 1D was the resolution of a one dimensional Richards equation. Despite these limitations, we could obtain reasonable reproduction of soil moisture distributions, good discharges at the outlet of basins, excellent reproduction of summer soil temperatures, and what we considered a good reproduction of turbulent heat and evapotranspiration exchanges.

1.2.4 **GEOtop 0.9375**

and subsequent version till the first public release (mainly financed by Projects with Servizio geologico PAT, progetto MORFEO by ASI, and EU IRASMOS and AQUATERRA projects)

The new development started with in mind that we had sooner or later to switch to a version of GEOtop with a full 3D integration of Richards equation.

However, the first new improvement of GEOtop was in the direction to include a multiple layer modeling of snow and a first core of the freezing soil subroutines. This was mainly accomplished during the Ph.S thesis of Stefano Endrizzi [2007], and greatly improved in his subsequent work at Saskatoon, working with Phil Marsh and Bill Quinton, and recently at Zurich University collaborating with Stephan Gruber.

Why complicating even more an already complex model? Moreover, why getting a new snow model, if the Utah energy balance seemed to work fine, as written in Zanotti et al., 2004? The rational behind this choice was essentially that the snow water equivalent was not enough for comparing snow measurement in the field with model outcomes. Clearly snow water equivalent (SWE) was enough just for those willing to cope with total water volume generated after snow melting, but not sufficient for studying and understanding the processes behind snowpack evolution and ablation. Nor even for having a reasonable estimate of soil temperature under the snow, and other interesting prognostics, like snow density.

However, Stefano's efforts were not limited to snow. He worked hard, for getting a consistent integrator of Richards equation, that he based on a Newton Krilov-method (Kelley, 2003). Besides he decided to

1.2. History 1. Introduction

change the surface water flow equation and numerics, by using the shallow water equation integrated with a robust but explicit method. This resulted in a very stable and reliable code that constitutes the core of the first public version of GEOtop. In fact Stefano decided to move from the the fraction of geometric series of $\sum_{i} (1/2)^{i}$ to the integer 1.

The collaboration of Stefano and Matteo Dall'Amico produced also a consistent integrator of the freezing soil moisture, after that Matteo, in his Ph.D thesis disentangled, at least for ourselves, a lot of thermodynamics (and together, we introduced a simple, and "normal" thermodynamic notation). This work has been documented in Dall'Amico et al., 2010 LINK, and produced a paper for The Cryosphere LINK.

1.2.5 Stefano Endrizzi's work

Up to version 0.875 version GEOtop was pretty much a home made effort, mainly pursued by Master and Ph.D students of Trento University. However, since then, either because the Ph.D students became doctors and spread around, and because other discovered the potential our work, GEOtop started to became really internationally used. Han Xunjun in China used GEOtop in his data assimilation system implementing an ensemble Kalman filter (in Python). The Lausanne group under the direction of Marc Parlange, within the collaboration of Silvia Simoni, and the direct coding efforts of Thomas Egger implemented a real time version of the model that is giving its results everyday (http://lsir-hydrosys01.epfl.ch:22006/). John Albertson and his group implemented an erosion module to be coupled with GEOtop. In Trento, a version of GEOtop, called GEOtop-EO implemented a prototype of infrastructure that includes besides the modeling core, a geographical database, with a raster service (built upon RAMADDA -LINK) and a visualization system based on JGrass. This was done for the project MORFEO (LINK). At Bolzano, in EURAC, Giacomo Bertoldi and Stefano Dallachiesa, endowed GEOtop with an external (so far) vegetation dynamical model (itself came from previous work by Albertson and Montaldo). Last, but not least, Mountain-eering made of GEOtop the center of its business plan, and supported the completion of the freezing soil module, and is going to develop a new NetCDF input/output system, and the creation of some data assimilation of snow measures.

Credits to work of the group of Lousanne should be given to have also included in GEOtop the ME-TEO/IO environment which was the way to link the model to a real-time acquisition system. Stefano Endrizzi himself, when at Saskatoon, discovered the work of Liston and Elder [2006] with MICROMET, and included it in the GEOtop distribution with the permission of the Authors.

Also other player came to the game. Arpa Val D'Aosta decided to make of GEOtop the principal tool for doing analysis on snow and permafrost, and it is going to support its improvement and usability. The Karlshrue Institute of Technology in Garmisch-Partenkirchen (and particularly Prof. Harald Kunstmann, and coworkers) adopted for simulation for one of their TERENO experiment (LINK).

This, just to mention partial developments, not all of them yet flowed into the main version of the model. All of these efforts, in fact, could not being really unified in a single product. 1. Introduction 1.2. History

1.2.6 GEOtop in Zurich

1.2.7 Future perspectives

So

So the questions for the future are:

how can we manage the future of this international crew, letting any single her freedom? and making the whole community grow cooperatively? how giving anyone the proper credits which are necessary to go ahead? how maintain while moving on relevant pieces of software still available avoiding to wipe them out (as it happens for the PM coed, and more recently, with the former runoff-modules. to do a couple of examples?

I gave already some possible direction (see for instance LINK) that derives from the issue raised by the work of Stefano Endrizzi and Hydrologis, and in an effort to unify all of my previous work lines.

However, this is not an aster I want to do by myself. The community around GEOtop must give its opinion. Because the only perfect model is the evolving one, since many contenders appear, our knowledge grows, and all of us work hard.

Relevant Literature

Chapter 2

Compiling Instructions

GEOtop runs properly under:

- Linux platform;
- · Mac platform;
- Windows platform.

2.1 Compile GEOtop through a makefile

The GEOtop source code can be downloaded through a terminal (or command prompt if you are using Windows) by typing, as shown in *Figure 2.1*:

"svn co https://dev.fsc.bz.it/repos/geotop/trunk/0.9375KMacKenzie"

Figure 2.1: Download GEOtop source code through a terminal

The downloaded folder contains the folders:

- Debug: which contains the object file created during the compilation and the makefile
- geotop: which contains the code
- Libraries: which contains the support libraries

Open a terminal, go into the folder *Debug* by typing:

\$ cd Debug

To compile GEOtop, type:

\$ make all

The executable file GEOtop1.2 is now created in the Debug folder.

Chapter 3

Basic theory

3.1 The calculation grid

3.1.1 Planar grid

The calculation domain is based on a fixed regular Cartesian grid that coincides with the DEM (Digital elevation model), as reported in Fig. 3.1, on which it is possible to extract the hydrological basin closed at a given outlet (Fig. 3.2). The X-axis coincides with the west-east direction and the Y-axis with the South-North direction, whereas the calculation grid size coincides with the pixel size (dX, dY) of the DEM.

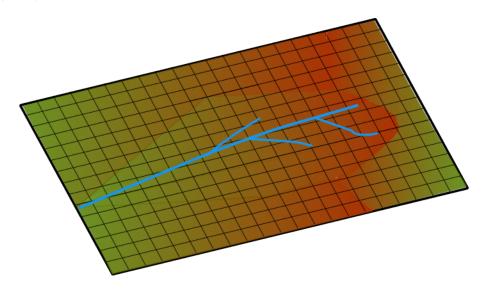


Figure 3.1: DEM of an the area of interest

3.1.2 Vertical grid

The Z-axis is vertical and oriented towards the center of the Earth. It is possible to define the number of layers along the z-axis and the discretization, i.e. the vector of layer depths (Fig. 3.3 left). Note that the layer depth be irregular (different layers of various depths) but uniform in all the domain and the layer numbering starts from the top to the bottom (Fig. 3.3 right). The calculation grid points coincide with the center of the cell (on the X-Y axis) and the center of the layer (on the X-Z axis). Table 3.1 reports and example of a vertical grid discretization characterized by 8 layers with irregular depths.

3. Basic theory 3.1. The calculation grid

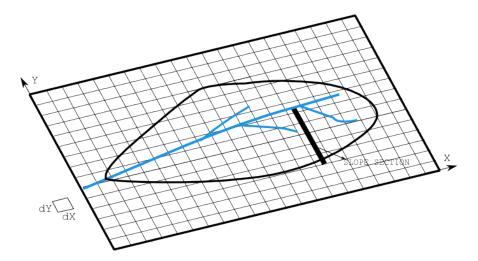


Figure 3.2: Calculation grid coinciding with the DEM. The hydrological basin (black line) and the river network (blue line) are present.

Layer ID	Depth (mm)
1	10
2	15
3	20
4	20
5	60
6	50
7	80
8	100

Table 3.1: Vertical grid discretization and layer depth

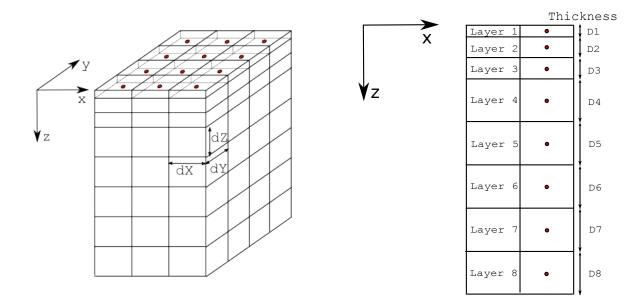


Figure 3.3: Left: three dimensional calculation grid. Right: discretization on the x-z plane. The red points, at the center of the cell, coincide with the calculation grid points

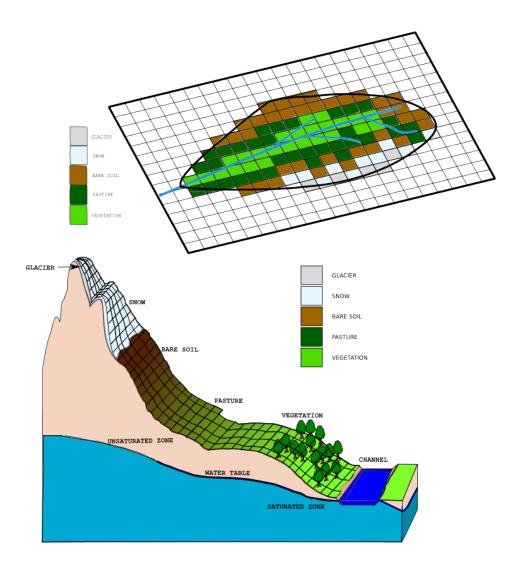


Figure 3.4: Top: Classification of a slope surface in a mountain basin on the basis of the land cover. Bottom: same classification for the entire basin.

3.2 The domain characterization

The domain characterization has the objective to determine:

- the land use i.e. vegetation, pasture, snow, glacier, forest etc. This map is usually called land cover
- the stratigraphical characteristics of the soil, i.e. 1 m of thick debris (gravel), 2 m of sand, 2 m of loam etc. in order to ease the guess of the hydraulic and thermal parameters of the soil. This map is usually called *soil type*.

3.2.1 Land cover

Let us define a slope on the DEM, as reported in Fig. 3.2: ideally it can be figured out as in Fig. 3.4: at the bottom left is located the channel, then towards the higher elevations one may found the vegetated area, pasture, bare soil, snow covered area and glacierized area. Fig. 3.4 on the top reports the slope surface discretization and classification, whereas on the bottom reports the land cover classification of the whole domain. In this example may be identified five classes of land cover: vegetated area, located near the main stream in the low elevated range; pasture area, located in the medium range elevations; bare soil area, located on the steepest part of the domain and at medium-high elevations; snow covered area, located at high elevation and finally the glaciarized area on

the highest parts.

3.2.2 Soil type

Let us imagine to take a section of the slope and to classify the type of soil in terms of texture (debris, gravel, sand, loam, clay) and bedrock depth. Each classification number would correspond to a particular soil stratigraphy, defining the soil particles and depth of bedrock. Starting from these characteristics, one could derive the hydraulic and thermal parameters, according to ? and **BLA BLA**. Fig. 3.5 reports the resulting map where each color corresponds to a given soil stratigraphy; the description of each type of soil stratigraphy is given in Table 3.2.

Stratigraphy ID	Layer ID involved	Soil texture
1	1, 2, 3	gravel
1	4, 5	clay
1	6, 7, 8	sand
2	1	clay
2	2, 3, 4	gravel
2	5, 6	clay
2	7, 8	sand
3	1, 2, 3, 4, 5, 6	clay
3	7	gravel
3	8	sand

Table 3.2: Soil type (stratigraphy) present in the domain

3.2.3 The final 3D calculation grid

The final calculation domain is reported in Fig. 3.6. At the top is represented a planar view of the basin with a detail on the soil discretization and stratigraphy; on the bottom, the slope profile is schematized: the surface is classified according to the land cover map, whereas the soil depth according to the soil type map. Please note that he discretization on the Z axis is vertical and not normal to the slope.

3.3 The focus on some points

It is possible to select some points in the basin that deserve a special attention, i.e. for the presence of a measurement device or for civil protection reasons. These points may be located wherever in the domain area and may be classified according to topographic characteristics (elevation, slope, aspect), surface type (land cover) and soil stratigraphy (soil type). Table 3.3 summarizes the characteristics of the simulation points reported on Fig. 3.6. The point 1 is located at low altitude on the bottom valley, in a vegetated area near the channel. The point 2 is located slightly upwards on the pasture, the point 3 is at medium-high altitude, where no vegetation is present (bare soil). The point 4, at 2500 m altitude, is still snow covered and finally the point 5, at 3100 m, is characterized by the presence of a glacier. As far as the soil type is concerned, the slope is characterized by the stratigraphy 1 at low altitude near the channel, where the point 1 is located. Then, at medium-range altitude, it is characterized by the stratigraphy 3 (see points 2 and 3) and finally, at high elevations, by the stratigraphy 2 (points 5 and 6).

These points may be highlighted to run multiple 1D simulations (see Par. 4.2) or to print specific point results.

Point ID	Elevation (m a.s.l.)	Slope (°)	Aspect (° N)	Land cover	Soil type
1	1200	15	30	vegetation	1
2	1600	10	30	pasture	3
3	2200	20	15	bare soil	3
4	2500	25	0	snow	2
5	3100	25	0	glacier	2

Table 3.3: Topographic, land cover and soil type characteristics of the simulation points

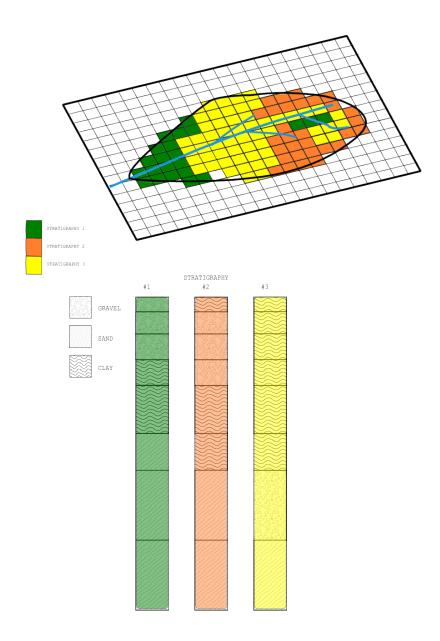


Figure 3.5: Domain characterization oriented to define the soil stratigraphy (soil type map).

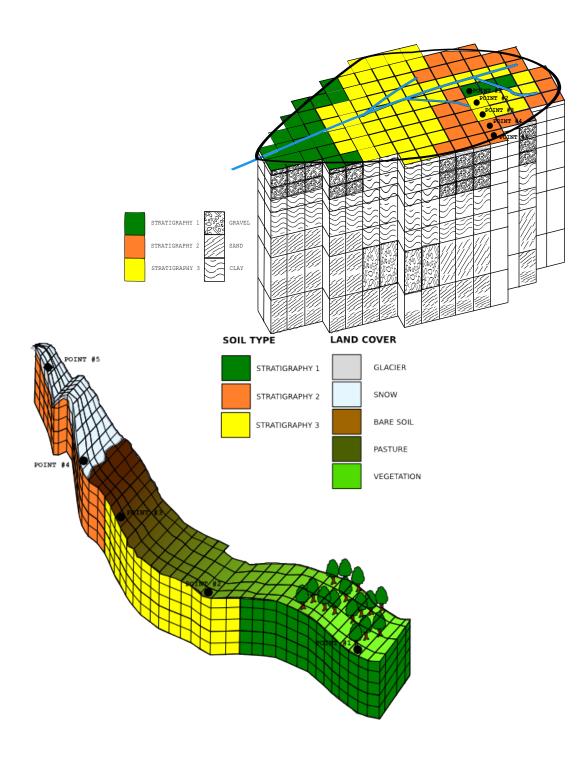


Figure 3.6: Domain characterization oriented to define the soil stratigraphy (soil type map).

3.4. Meteorological forcing 3. Basic theory

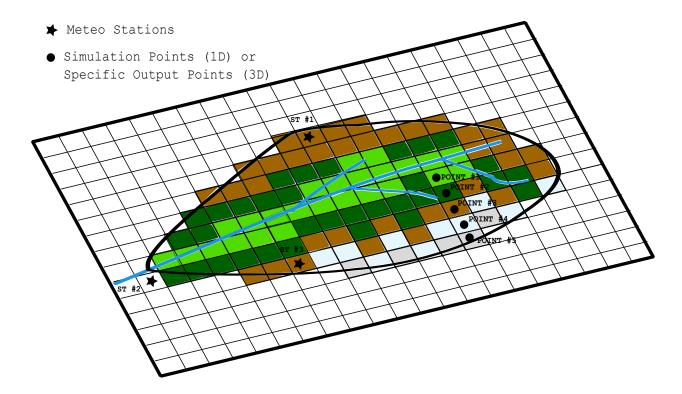


Figure 3.7: Planar view of meteo stations (ST) location in the domain area.

3.4 Meteorological forcing

The meteorological data represent the dynamic forcing that constrain the domain to evolve, under the constraints given by topography, the conservation laws and the boundary conditions. GEOtop may receive in input the meteorological data coming from several stations (the number of meteo stations is an input parameter).

3.4.1 Meteo station

In order to describe the characteristics of the meteo stations, it is requested to provide the following information:

- the number of meteo station;
- the coordinates (X, Y, Lat, Long) of each meteo station;
- the elevation;
- the sky view factor;
- the standard time difference (of the time records with respect to Greenwich Meridiam Time);
- the height of the wind speed and air temperature sensors.

Fig. 3.7 shows the planar view of the domain area where three meteo stations (ST) are present: ST1 is located on a high peak, ST2 is on the bottom valley and ST3 is on a medium altitude peak at the lefthand side of the river. The prospect view of the meteo stations is reported in Fig. 3.8. It is important to note the following: (i) the meteo stations may also be outside of the land cover map, however must be located inside the DEM area; (ii) the sky view factor of the meteo station depends on topography: whereas ST1 has no obstruction because of its high elevation, ST2 is characterized by a big obstruction given by the mountain ranges. Finally, the zoom in Fig. 3.8 reports a particular of the meteo station: the wind sensor height and the air temperature height must be specified in the model.

3.4.2 Meteo data

Each meteo station, according to the sensor installed, may measure different type of variables. The admitted input variables considered as meteorological forcing are:

- 1. precipitation intensity (mm h^{-1})
- 2. wind velocity (m s^{-1})
- 3. wind direction (°N)
- 4. windX and windY (m s⁻¹) (must belong to the same meteo station)
- 5. relative humidity (%)
- 6. air temperature (°C)
- 7. dew temperature ($^{\circ}$ C)
- 8. air pressure (bar)
- 9. short wave solar global radiation (W m⁻²)
- 10. short wave solar direct radiation (W m⁻²)
- 11. short wave solar diffuse radiation (W m^{-2})
- 12. short wave solar net radiation (W m⁻²)
- 13. long wave incoming radiation (W m^{-2})

The meteo variables have to be provided in the Meteo file, specified by the keyword *MeteoFile*. It is compulsory to add to the file the column of the date, given by the DD/MM/YYYY hh:mm format or by the Julian day. Figg. 3.9, 3.10 3.11 report an example of the time series that may be given in input.

SCRIVI CHE PUOI USARE -9999 E LUI USA IL DATO PRECEDENTE

3.4.3 Cloudiness

cloud transmissivity (-) cloud factor (-)

3.4.4 Lapse rates

The meteorological variables are usually characterized by a gradient on elevation, known as "lapse rate". It represents the variation of the variable with elevation. GEOtop admits in input the a dynamic lapse rate that (variable in time) that, according to the elevation of the calculation grid node, modifies the value of the variable. The meteorological variable that admits a lapse rate are:

- lapse rate for precipitation (mm h⁻¹ hm⁻¹)
- lapse rate for air temperature (°C hm⁻¹)
- lapse rate for dew temperature (°C hm⁻¹)

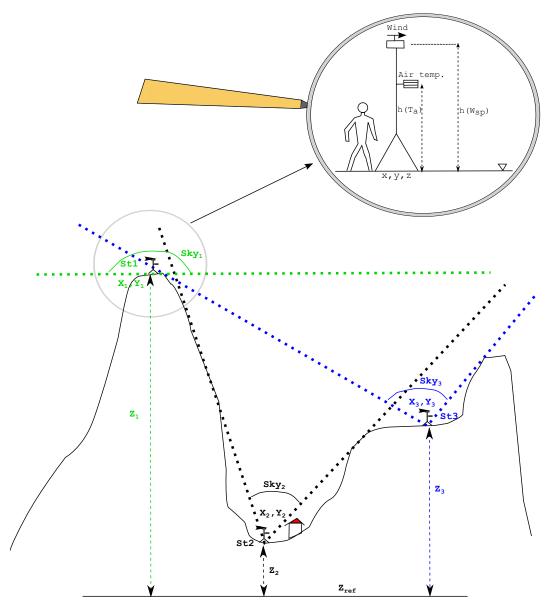


Figure 3.8: Prospect view of meteo station (ST) location in the domain area. X,Y,Z represent the east coordinate, north coordinate and elevation respectively. In the lence is reported a zoom of one meteo station: $h(T_a)$ and $h(W_{sp})$ represent the height of the air temperature and wind sensor respectively

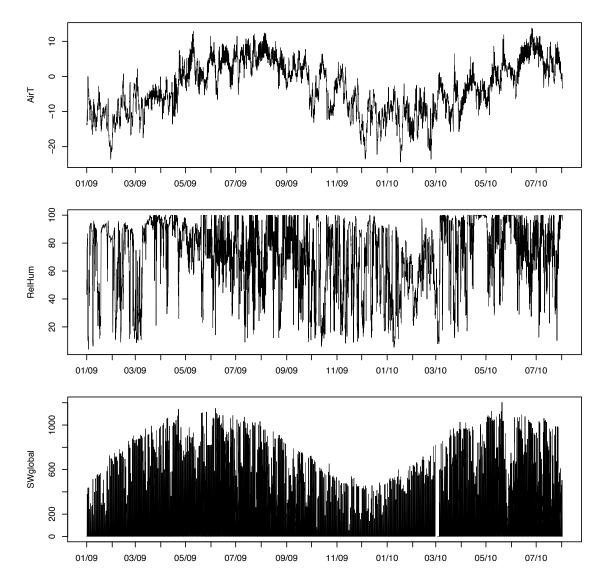


Figure 3.9: Meteo data measured in a meteo station. Top: air temperature (m s $^{-1}$); middle: relative humidity (%); bottom: short wave global radiation (W m $^{-2}$)

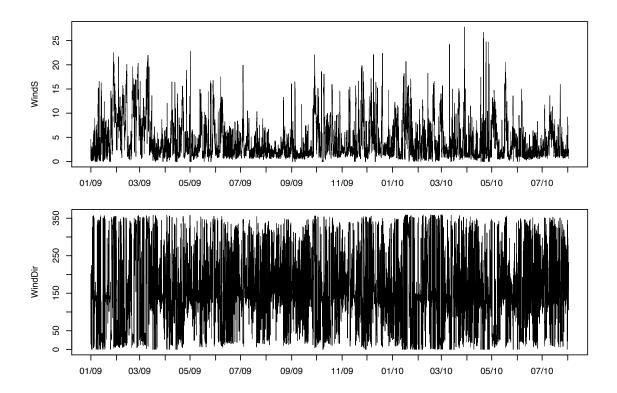


Figure 3.10: Meteo data measured in a meteo station. Top: wind speed (m s $^{-1}$); bottom: wind direction ($^{\circ}$ N)

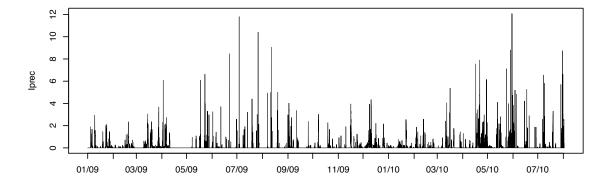


Figure 3.11: Meteo data measured in a meteo station: precipitation intensity $(mm \ h^{-1})$

Chapter 4

Simulation flow chart

This section is intended to provide a description of the simulation flow chart. In particular, a special focus will be given to the user's point of view (i.e. necessary input to provide and choices to make) when launching a simulation, and to the model point of view (i.e. calculation flow chart).

4.1 User point of view

The user that needs to fulfill a set of tasks in order to prepare the input necessary to launch a GEOtop simulation, as reported in Fig. 4.1.

Set general parameters The user must define the type of simulation (1D or 3D) and other general input.

Meteo station characterization The user must define the position and characteristics of the meteo stations.

Meteo data The user must define the meteorological forcing measured in each meteo station.

Topographic characterization The user must define the topographical characteristics of the domain area (i.e. elevation, aspect, slope, sky view factor, curvature).

Land cover characterization The user must define the surface type characteristics of the domain (often called "land use" or "land cover").

Soil type characterization The user must define the soil type characteristics of the domain area (i.e. soil texture, soil water retention curve etc.).

Initial conditions The user must define the initial temperature and water content in each cell of the domain.

Boundary conditions The user must define the behavior (fluxes) at the border domain.

Physical parameters The user must parametrize the various physical processes involved. In particular, the current version of GEOtop allow to specify the parameters typical of the following processes: glacier, snow, vegetation, soil/rock thermal, soil/rock hydraulic and discharge).

Output parameters The user must determine the desired information to be printed and the correspondent frequency.

4.2 1D simulations

Originally GEOtop was born as a hydrological model with the objective to produce maps of hydrological variables in a catchment. Later, thanks to the boost received by the permafrost community, it was adapted also to analyze single points located in extreme topographies. In these points, as outlined in Par. 3.3, for various reasons it may be interesting to produce 1D simulations. In fact 1D simulations are often useful as they allow to obtain results very rapidly and, in some cases, sufficiently reliable.

4. Simulation flow chart 4.2. 1D simulations

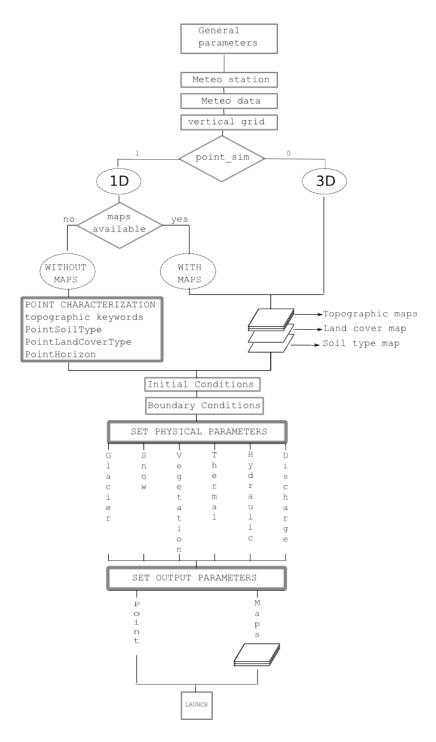


Figure 4.1: GEOtop flow chart: user point of view for preparing a simulation

4.2.1 Point horizon

In order to account for the topography visible by the simulation point, it is recommendable to provide the horizon file of the point. Every point P(x, y, z) on the landscape, unless in the middle of a flat terrain, is surrounded by obstacles like mountains, buildings, trees. These objects, during the day, according to the elevation and position (azimuth) of the sun at a particular time in the year (julian day and day time), may produce a cast shadow on the point P that prevents the point from receiving direct solar radiation. Thanks to proper cameras (e.g. fish-eye camera, see bottom of Fig. 4.1) or to GIS routines, it is possible to produce a file that outlines the angle height of the obstacles along a given azimuth direction. The HorizonPointFile allows to specify the horizon seen

4.2. 1D simulations 4. Simulation flow chart

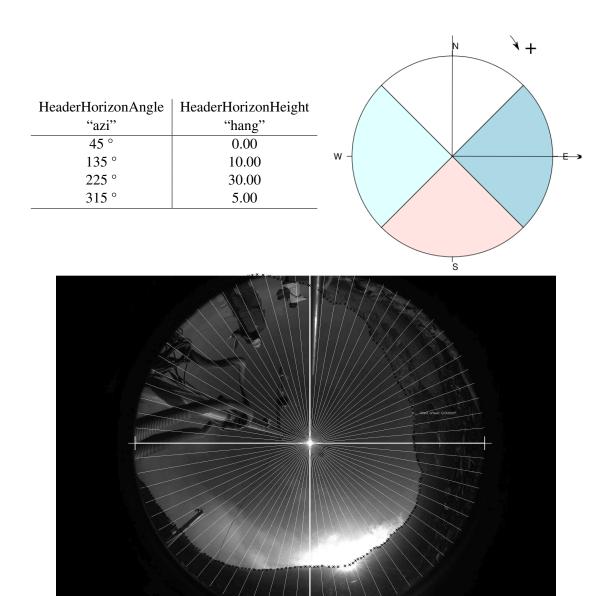


Table 4.1: Top: example of the default horizon file and of the corresponding azimuth classes. An example is given in Par. 5.2. Bottom: example of a fish-eye view from a point (courtesy of Stephan Gruber)

by a point P along a desired discretization of the azimuth. The file structure is thus a matrix whose first column represents the azimuth angle and the second column the elevation angle of the object height. The Table 4.1) reports the horizon file where the azimuth has been discretized in 4 parts. Note that the North direction must always be in the center of the slides in which the circle is divided. It is possible to increase the azimuth classes in order to provide a more detailed description of the obstacles height. The horizon data may be specified in the following cases:

- 1. 1D simulations: since the topography is not provided, the user may provide the horizon file for every simulated point. Unless given, the model creates one assuming an overall flat terrain;
- 2. for meteorological stations: in this case it is needed to set the time when the sun is obscured by the obstacle; from that time onward the cloudiness calculation is no more carried by the ratio between actual and potential radiation, since the actual radiation would no longer provide a reliable value.

4. Simulation flow chart 4.3. Model point of view

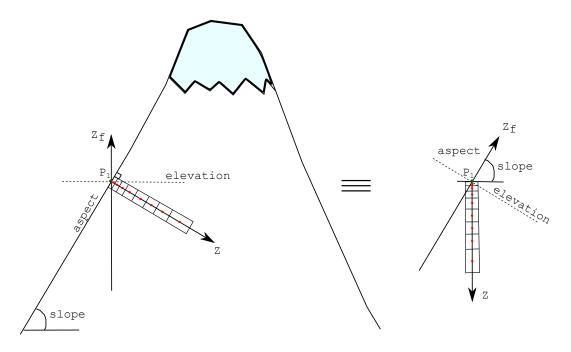


Figure 4.2: Scheme of a 1D simulation on steep topography typical of high mountain altitude

4.2.2 1D simulations: with or without maps

Let us suppose to select five points in the basin (see Fig. 3.6) where we want to run five 1D simulations. First of all it is necessary to provide the coordinates (X, Y) of the points, together with the average latitude and longitude of the area. In addition to that, it necessary to characterize the points by specifying the topography (elevation, aspect, slope, sky view factor, curvatures and the horizon), the soil type and land cover. This last information may be provided in two ways:

- with maps: the topographical, land cover and soil type maps are provided and the model, according to the coordinates of
 the points, automatically sets the topographical characteristics;
- without maps: the user has to specify all the characteristics of the points (e.g. see Table 5.3).

4.2.3 1D simulations in steep topography

The domain scheme of a 1D simulation at steep mountain topography is depicted in Fig. 4.2: the scheme is represented on the left: the axis of elevation Z_f is on the vertical direction and sets the elevation of the point on the surface, whereas the layers are located normal to the slope. If present, also the slope, aspect and horizon of the point P_1 may be specified. As the 1D representation is just an abstract sequence of layers of various depths located along on an imaginary line, one may think that the final scheme resembles what outlined on the right, where the elevation axis and the line Z axis form an angle complementary to the slope angle. Note that the Z axis does not coincide with the gravitational Z_f axis.

4.3 Model point of view

On the other hand, the model transforms the input given by the user into results, by solving the energy and mass balance in the calculation domain. As reported in Fig. 4.3, at the beginning of the simulation, GEOtop does the following activities:

- 1. Read input data In this phase, the model reads: (i) the keywords and parameters specified in *geotop.inpts* and other properly defined files; (ii) the topographic maps (elevation, aspect, slope, sky view factor, curvature), the land cover map (that coincides with the calculation mask), the map of soil type and, if available, the maps of initial conditions; (iii) reads the parameters (physical and output). If a parameter or a map is not specified with the proper keyword, it assumes the default value.
- **2. Create and initialize mesh** As reported in Par. 3.1, it creates the calculation mesh according to the grid size of the land cover map and the vertical nodes spacing defined for the vertical grid. Then it initializes the temperature and water pressure head of each node with the initial conditions and sets the physical parameters according to what specified by the keywords.

4.3. Model point of view 4. Simulation flow chart

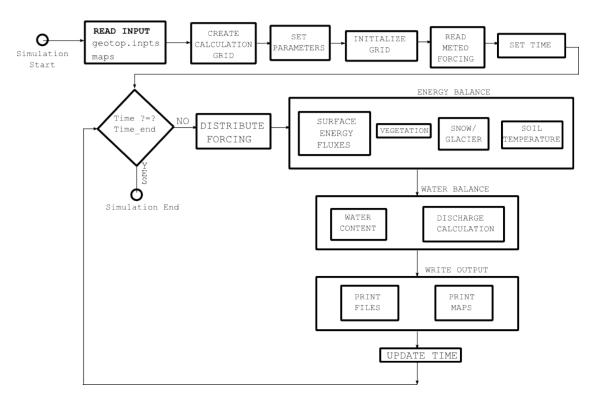


Figure 4.3: GEOtop flow chart: model point of view for accomplishing a simulation

3. Read meteo data During this phase it incorporates the meteorological data for each meteo station: these data represent the forcing that will drive the simulation, producing the dynamic boundary conditions for the surface nodes. Finally, GEOtop sets the initial simulation time to initialize the simulation counter: this will allow to compare the current simulation time with the expected simulation end time.

At this point begins the time loop for the calculation and the printing routines. In particular, at each calculation time step, GEOtop fulfills the following tasks:

- **1. Distribute meteorological forcing** This allows to spatially distribute the meteorological forcing, measured in discrete meteo station, in all the calculation cells. This methodology is based on **LISTON**.
- **2. Energy balance** In this phase the energy balance equation is solved. This encompasses the calculation of the surface energy fluxes, the vegetation module, the snow/glacier module and the routine the calculates the soil temperatures and ice content.
- **3. Water balance** In this phase the mass balance equation is solved. This encompasses the calculation of the infiltration routine to determine the pore water pressure and water content through a 3D Richards solver. Eventually, the runoff and channel routing routines, based on a shallow-water solver, will allow to determine the discharge at the basin outlet.
- **4.** Write output This phase is intended to print the point information and the maps according to the desired output frequency.
- **5. Update and check time** This phase updates the time with the calculation time step and compares the new time with the simulation end time, to verify whether to stop the simulation or loop again. If the current simulation time SUPERA the end of the simulation, then the program stops and deallocates all the structures.

4.4 How to Run GEOtop

4.4.1 From Terminal

Open a terminal, go into the folder Debug by typing:

\$ cd Debug

Write:

\$./GEOtop1.2

Leave one space and type now the path to the folder where the simulation files are:

\$./GEOtop_1.2 /Users/matteo/Duron/

Remember to put a"/" (slash) at the end and the type Return. The simulation should start.

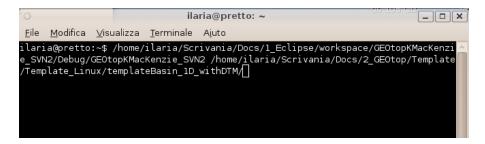


Figure 4.4: SVN

```
ilaria@pretto: ~
                                                                                                                                    <u>F</u>ile <u>M</u>odifica <u>V</u>isualizza <u>T</u>erminale A<u>i</u>uto
19/6/2009 18:53 JD:169.786458 (10^ simulation day) 97.81% completed! 19/6/2009 19:53 JD:169.828125 (10^ simulation day) 98.23% completed! 19/6/2009 20:52 JD:169.869792 (10^ simulation day) 98.65% completed! 19/6/2009 21:53 JD:169.911458 (10^ simulation day) 99.06% completed! 19/6/2009 22:53 JD:169.953125 (10^ simulation day) 99.48% completed!
19/6/2009 23:52 JD:169.994792 (10^ simulation day) 99.90% completed!
SW=180.317978 W/m2 LW=-107.845006 W/m2 H= 49.50 W/m2 LE= 23.11 W/m2
 Prain= 31.35 mm Psnow= 0.00 mm Rout= 0.00 mm/h
 Max Error Richards=-0.000000000238894972 mm/h
Deallocating top
Deallocating sl
 eallocating land
Deallocating water
Deallocating channel network
Deallocating egy
Deallocating snow
Deallocating glacier
Deallocating met
Deallocating par
Deallocating files
 Deallocating UV
End of simulation!
 laria@pretto:~$
```

Figure 4.5: SVN

I/O scheme: the keywords

GEOtop Input/Output (I/O) scheme is based on the keyword concept. Each parameter, concerning physical processes, output personalization, domain discretization and initial/boundary condition, is described by a keyword. The keywords may be classified according to the dimension (scalar or vector), type (numerical or string) and meaning (physical or boolean), as described in the Table 5.1.

	Scalar	Vector
Dimension	it refers to a single value, valid for the whole basin and during the entire simulation	it refers to more classes, layers or simulations. The vectors are composed just by numerical
	basin and during the entire simulation	values (not strings).
	Numerical	String
Туре	it is used to assign parameters	it is used to define maps, files or headers
	Physical	Boolean
Meaning	it is used to assign physical parameters	it is used to choose or reject an option in the
		parameterization process

Table 5.1: Keywords classification

The keywords may be used to describe both the input data and the output personalization. In particular, the keywords identify the following types:

- 1. parameters: they may be physical parameters, option parameters or output personalization;
- 2. **files**: they refer to input files, containing physical parameters, and output files containing the simulation results;
- 3. **maps**: they refer both to input maps, describing topographic features or soil characterization, and to output maps containing the simulation results;
- 4. **tensor**: they refer both to output maps containing the simulation results in each layer, or at specified depths, producing a 3D map:
- 5. **headers**: they refer to the column name of an input parameter or to the column name of an output result.

5.1 Keywords syntax

The main file where the keywords are defined is *geotop.inpts*. In this file, each line beginning with the character "!" is considered a comment, and therefore the following characters in the line won't be read.

```
! THIS IS a comment
```

In order to assign a value to the keyword, it is necessary to use the (character "="):

```
TimeStepEnergyAndWater = 3600
```

This instruction orders the model to assign 3600 to the keyword *TimeStepEnergyAndWater*. It is possible to assign a keyword a vector of numerical values by separating the components by the character ",".

```
SoilLayerThicknesses=10, 15, 30, 50
```

This instruction assigns the keyword *SoilLayerThicknesses* a vector composed by 4 elements, namely: 10, 15, 30 and 50. It is not possible to assign a keyword a vector of strings.

5.1.1 Keywords definition

Readable characters

The numbers, the lower and upper case letters, the characters ".", "-", "+", "/", ":", "[", "\", "]", " \wedge ", "-", and the separator characters will be referred to as "readable characters". All the other characters, except for the assignation character ("=") and the vector separator character (","), are not even read.

Strings or numerical keywords

The criterion used to distinguish whether an assignation is a string or numerical (be it single value or vector) is based on the **first readable character** after the field separator "=", as explained in Table 5.2. As a consequence, it is not possible to assign string parameters that begin with a number or "+", "-", "." (except ".."), because they will be considered numerical. Furthermore, the upper case letters are automatically converted in lower case, therefore all string keywords and parameters result to be case insensitive.

First character indicating a string keyword	First character indicating a numerical keyword
"/"	"+"
····	"_"
"["	"E"
"\"	"e"
"]"	"." (decimal separator)
"∧"	numbers
" · · · · · · · · · · · · · · · · · · ·	
·· ··	
letters	
numbers	

Table 5.2: Character classification for strings and numerical

This means that the command lines:

```
TimeStepEnergyAndWater = 3600
```

and:

```
TimeStepEnergyAndWater = 3 this is the first figure 6 bla bla 0 micio bau 0 polenta
```

are actually equivalent, provided the first readable character is a number or "+", "-", "." In addition, since the string are actually case insensitive, the command lines:

```
TimeStepEnergyAndWater = 3600
Time step energy and water = 3600
```

are also equivalent.

5.1.2 Dates and time

The dates in GEOtop are considered numerical parameters and are expressed in the "date12" format, namely using 12 figures as DDMMYYYYhhmm, where D = day, M = month, Y = year, h = hour (in 24 hours format). It is necessary to use 2 figures (not only one) for the minute, hours, month, and 4 figures for the year, otherwise the date will be misunderstood. An exception is made for the day which may also be represented by one figure. Since within a numerical value parameter, the characters different from numbers, "+", "-", ".", and separators are not readable, provided they are not the first character, it is also possible to express the date12 format as DD/MM/YYYY hh:mm or DD MM YYYY hh mm, but not as DD-MM-YYYY hh:mm because "-" makes changes to the meaning of a numerical value.

5.2 Keywords properties

The way the keyword are assigned is based on the following assumptions:

self explanatory The keyword is generally a "composed word" that aims at explaining its meaning just through the words that constitute it.

For example the keyword: *TimeStepEnergyAndWater* describes the calculation time step for the energy and water balance equations. The keyword: *SoilLayerThicknesses* outlines the layer thickness of the soil discretization.

tacit If not displayed, the parameter the keyword refers to will be initialized by the default value. Few parameters are mandatory (it will be remarked when this is the case), while most of them are not necessary to be assigned, and the corresponding line can be skipped or commented. The mandatory parameters are:

- Latitude
- Longitude
- integration time step for energy and water balance equation TimeStepEnergyAndWater
- Date and time of the simulation start in date12 format InitDateDDMMYYYYhhmm
- Date and time of the simulation end in date12 format EndDateDDMMYYYYhhmm

conservative The keywords allow to define the output files, maps and variables to be printed.

Only the output variables, maps and files that have been declared by the proper keyword will be printed in order to save memory and to keep the output simple.

For example, if one is interested in printing the incoming, outgoing and net shortwave radiation in a simulation point, may specify:

In this way two output files will be created: "point.txt" (associated to the keyword *PointOutputFileWriteEnd*) and the file "soil-Tave.txt" associated to the keyword *SoilAveragedTempProfileFileWriteEnd*. The file "point.txt" will contain the results associated to the desired keywords at the specified column, i.e. the variable associated to the keyword *SWupPoint* will be printed in the column n. 2. Eventually, in case one wants to personalize the name of a output variable, it is necessary to flag the keyowrd *DefaultPoint=0* and then to specify the output keywords headers:

```
!------
! POINT OUTPUT HEADER
!-----
```

```
DefaultPoint = 0
HeaderDatePoint = "date"
HeaderSWupPoint = "SW out"
HeaderSWinPoint = "SW in"
HeaderSWNetPoint = "SW net"
```

In case one wanted to print the average temperatures of the soil:

In this case the file "soilTave.txt" will be produced, containing the temperatures at each layer. If one wanted to have the temperatures calculated at specified depths, one should write:

In this case the file will contain the temperatures at 0.1, 0.5, 1.0 and 2.0 m.

self learning If the keyword represents a vector of length "l" and the input consists in a vector of length "m" with m < l, then the successive l - m elements will be initialized equal to the element "l". For example, the keywords:

```
SoilLayerNumber=10
SoilLayerThicknesses=10, 15, 30, 50
InitSoilTemp=2

are interpreted as:

SoilLayerNumber=10
SoilLayerThicknesses=10, 15, 30, 50, 50, 50, 50, 50, 50
InitSoilTemp=2, 2, 2, 2, 2, 2, 2, 2, 2, 2
```

organization The keywords may be assigned in the *geotop.inpts* file or in external files defined by proper keywords, in order to ease the organization of input. The keywords may also identify the name of files and headers to improve the output visualization. For example, let us assume to run a 1D simulation on eight points whose topographical and horizon (see Par. 4.2.1) characteristics are defined in Table 5.3.

Point	Elevation	Slope (°)	Aspect (° N)	Horizon file
	(m a.s.l.)			
1	1600	10	0	1
2	2100	10	0	2
3	1600	30	0	1
4	2100	30	0	2
5	1600	10	180	1
6	2100	10	180	2
7	1600	30	180	1
8	2100	30	180	2

Table 5.3: Topographical characteristics of the simulation points

In order to provide these characteristics, one has two options. In the first option, one uses only the geotop.inpts file:

```
HorizonPointFile= "horfile"
HeaderHorizonAngle = "azi"
HeaderHorizonHeight = "hang"
PointElevation = 1600, 2100, 1600, 2100, 1600, 2100, 1600, 2100
PointSlope = 10, 30, 10, 30, 10, 30, 10, 30
PointAspect = 0, 180, 0, 180, 0, 180, 0, 180
PointHorizon = 1, 2, 1, 2, 1, 2, 1, 2
```

where the *HorizonPointFile* becomes (see Table 4.1):

```
azi, hang
45, 0
135, 10
225, 30
315, 5
```

Alternatively, in order to ease the comprehension, especially when the number of simulation points is high, one could define an external file (*PointFile*) containing the features of the points, where the name of the columns has been defined in *geotop.inpts* in the proper "header" keywords. This would result in:

```
HorizonPointFile = "horfile"
PointFile = "listpoints"
HeaderPointElevation = "ele"
HeaderPointSlope = "slp"
HeaderPointAspect = "asp"
HeaderPointHorizon = "hor"
HeaderHorizonAngle="azi"
HeaderHorizonHeight="hang"
```

and the correspondent *PointFile* would result in:

```
ID, ele, slp, asp, hor
1, 1600, 10, 0, 1
2, 2100, 30, 180, 2
3, 1600, 10, 0, 1
4, 2100, 30, 180, 2
5, 1600, 10, 0, 1
6, 2100, 30, 180, 2
7, 1600, 10, 0, 1
8, 2100, 30, 180, 2
```

5. I/O scheme: the keywords 5.2. Keywords properties

1D: domain definition and characterization

As pointed out in Fig. 4.1, the 1D simulation may defined in two ways:

- 1. with maps: in this case the user must provide also the topographical maps together with the land cover, the soil type and, if present, the initial conditions maps. Furthermore, the user must give in input also the coordinates of the simulation points (see Fig. 3.6 and 3.7). The model automatically extrapolates the information on the give points through the provided maps;
- 2. without maps: in this case, the user must provide all the necessary information about the topography, land cover and soil type of the simulation points.

In both cases the domain discretization along the Z coordinate (Fig. 3.3 on the right) must be properly defined as described in Table 6.1.

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
SoilLayerThicknesses	vector defining the thickness of the various soil layers. If not present, a column of 5 layers 100 mm thick will be assumed	mm		100	vec	num
SoilLayerNumber	number of soil layers (is calculated after the number of components of the vector SoilLayerNumber)	-		5	sca	num

Table 6.1: Keywords of parameters referred to soil layer

6.1 Without maps

Keyword	Description	M. U.	range	Default	Sca /	Log /
				Value	Vec	Num
PointLandCoverType	Land Cover type of the	-		NA	vec	num
	simulation point					
PointSoilType	Soil type of the simula-	-		NA	vec	num
	tion point					
PointElevation	elevation of the point of	m a.s.l.		NA	vec	num
	simulation					
PointSlope	Slope steepness of the	degree		NA	vec	num
	simulation point					
continued on next page						

	continued from previous page						
Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num	
PointAspect	Aspect of the simulation point	degree		NA	vec	num	
PointSkyViewFactor	Sky View Factor of the simulation point	-		NA	vec	num	
PointCurvatureNorthSouthDirection	N-S curvature of the simulation point	m^{-1}		NA	vec	num	
PointCurvatureWestEastDirection	W-E curvature of the simulation point	m^{-1}		NA	vec	num	
PointCurvatureNorthwestSoutheastDirection	N-W curvature of the simulation point	m^{-1}		NA	vec	num	
PointCurvatureNortheastSouthwestDirection	N-E curvature of the simulation point	m^{-1}		NA	vec	num	
PointDrainageLateralDistance	Lateral Drainage distance of the simulation point	m		NA	vec	num	
PointLatitude	Latitude of the simulation point	degree		NA	vec	num	
PointLongitude	Longitude of the simulation point	degree		NA	vec	num	
PointHorizon	number of the Horizon- PointFile that describes the horizon of the simu- lation point	-		NA	vec	num	

Table 6.2: Keywords of topographical, land cover and soil type characteristics that may be set in geotop.inpts. Each parameter may be give in input as a vector, each component representing a point. Otherwise the characteristics may be summarized in the file PointFile, each value corresponding to the proper header defined in Table 6.8.

Files

Keyword	Description
PointFile	name of the file providing the properties for the simulation point
HorizonPointFile	name of the file providing the horizon of the simulation point

Table 6.3: Keywords of files related to soil/rock spatial characterization for 1D simulation

Headers

Keyword	Description	Associated file				
HeaderHorizonAngle	String representing the header of the column	HorizonPoint /				
	HorizonAngle of the HorizonPoint and Hori-	HorizonMeteo-				
	zonMeteoStation files	Station				
HeaderHorizonHeight	String representing the header of the column	HorizonPoint /				
	HorizonHeight of the HorizonPoint and Hori-	HorizonMeteo-				
	zonMeteoStation files	Station				
HeaderPointElevation	column name in the file PointFile for the eleva-	PointFile				
	tion of the point					
HeaderPointSlope	column name in the file PointFile for the slope	PointFile				
	continued on next page					

continu	continued from previous page				
Keyword	Description	Associated file			
HeaderPointAspect	column name in the file PointFile for the aspect	PointFile			
	of the point				
HeaderPointSkyViewFactor	column name in the file PointFile for the sky	PointFile			
	view factor of the point				
HeaderPointCurvatureNorthSouthDirection	column name in the file PointFile for the N-S	PointFile			
	curvature of the point				
HeaderPointCurvatureWestEastDirection	column name in the file PointFile for the E-W	PointFile			
	curvature of the point				
Header Point Curvature Northwest Southeast Direction	column name in the file PointFile for the NW-	PointFile			
	SE curvature of the point				
Header Point Curvature Northeast Southwest Direction	column name in the file PointFile for the NE-	PointFile			
	SW curvature of the point				
HeaderPointDrainageLateralDistance	column name in the file PointFile for the dis-	PointFile			
	tance of lateral drainage				
HeaderPointHorizon	column name in the file PointFile that provides	PointFile			
	the number of the HorizonPointFile that de-				
	scribes the horizon of the simulation point				
HeaderPointLatitude	column name in the file PointFile for the lati-	PointFile			
	tude of the point				
HeaderPointLongitude	column name in the file PointFile for the longi-	PointFile			
	tude of the point				
HeaderPointID	column name in the file PointFile for the identi-	PointFile			
	fication ID of the point				
HeaderCoordinatePointX	column name in the file PointFile for the x co-	PointFile			
	ordinate of the point				
HeaderCoordinatePointY	column name in the file PointFile for the y co-	PointFile			
	ordinate of the point				

Table 6.4: Keywords of headers that specify the soil/rock spatial characterization for 1D simulation

6.2 With maps

Maps

Keyword	Description
DemFile	name of the file providing the DEM map
SkyViewFactorMapFile	name of the file providing the sky view factor map
SlopeMapFile	name of the file providing the slope steepness map
RiverNetwork	name of the file providing the river network map
AspectMapFile	name of the file providing the aspect map
CurvaturesMapFile	name of the file providing the curvature map
LandCoverMapFile	name of the file providing the land cover map
SoilMapFile	name of the file providing the soil map

Table 6.5: Keywords of input file related to the domain

Files

Keyword	Description
PointFile	name of the file providing the properties for the simulation point

Table 6.6: Keyword of the file related to the spatial characterization of soil/rock properties. The parameters identified by the row index represent the value corresponding to the SoilMapFile map.

Parameters

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
PointID	identification code for the point			NA	vec	num
	of simulation					
CoordinatePointX	coordinate X if PixelCoordinates	m (according to the		NA	vec	num
	is 1, number of row of the matrix	geographical projec-				
	if PixelCoordinates is 0	tion of the maps)				
CoordinatePointY	coordinate Y if PixelCoordinates	m (according to the		NA	vec	num
	is 1, number of column of the ma-	geographical projec-				
	trix if PixelCoordinates is 1	tion of the maps)				
Latitude	Average latitude of the basin,	degree	-90, 90	45	sca	num
	positive means north, negative					
	means south					
Longitude	Average longitude of the basin,	degree	0, 180	0	sca	num
	eastwards from 0 meridiane					

Table 6.7: Keywords of point characterization for the choice of points where to perform a 1D simulation

Headers

Keyword	Description	Associated file
HeaderPointID	column name in the file PointFile for the identification ID of the	PointFile
	point	
HeaderCoordinatePointX	column name in the file PointFile for the x coordinate of the	PointFile
	point	
HeaderCoordinatePointY	column name in the file PointFile for the y coordinate of the	PointFile
	point	

Table 6.8: Keywords of headers that specify the soil/rock spatial characterization for 1D simulation

3D: domain definition and characterization

7.1 Planar domain definition

Keyword	Description
DemFile	name of the file providing the DEM map
LandCoverMapFile	name of the file providing the land cover map

Table 7.1: Keywords of input file related to the domain

7.2 Z-coordinate domain definition

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
SoilLayerThicknesses	vector defining the thickness of the various soil layers. If not present, a column of 5 layers 100 mm thick will be assumed	mm		100	vec	num
SoilLayerNumber	number of soil layers (is calculated after the number of components of the vector SoilLayerNumber)	-		5	sca	num

Table 7.2: Keywords of parameters referred to soil layer

7.3 Topographical characterization

Keyword	Description
SkyViewFactorMapFile	name of the file providing the sky view factor map
SlopeMapFile	name of the file providing the slope steepness map
RiverNetwork	name of the file providing the river network map
AspectMapFile	name of the file providing the aspect map
CurvaturesMapFile	name of the file providing the curvature map
BedrockDepthMapFile	name of the file providing the bedrock depth map

Table 7.3: Keywords of input maps necessary to launch the 3D simulation

7.4 Land cover and soil depth characterization

Keyword	Description
LandCoverMapFile	name of the file providing the land cover map
SoilMapFile	name of the file providing the soil map

Table 7.4: Keywords of input maps necessary to launch the 3D simulation

Each land cover type may be characterized by parameters that define the influence on vegetation, soil surface and snow. Each soil type may be further described in the file *PointFile* (see Table 7.5) where each row index represents the value corresponding to the *SoilMapFile* map.

Keyword	Description
PointFile	name of the file providing the properties for the simulation point

Table 7.5: Keyword of the file related to the spatial characterization of soil/rock properties. The parameters identified by the row index represent the value corresponding to the SoilMapFile map.

It is also requested to provide a definition of the average latitude and longitude of the domain area, as specified in Table 7.8.

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
Latitude	Average latitude of the basin, positive means north, negative means south	degree	-90, 90	45	sca	num
Longitude	Average longitude of the basin, eastwards from 0 meridiane	degree	0, 180	0	sca	num

Table 7.6: Keyword of parameters describing the point characterization for 3D simulations

7.5 Output

It is possible to define some points where to obtain output information, as described in Par. 3.3. The parameters and headers to provide are specified in Table 7.7 and 7.8 respectively.

Keyword	Description	Associated file
HeaderPointID	column name in the file PointFile	PointFile
	for the identification ID of the point	
HeaderCoordinatePointX	column name in the file PointFile	PointFile
	for the x coordinate of the point	
HeaderCoordinatePointY	column name in the file PointFile	PointFile
	for the y coordinate of the point	

Table 7.7: Keywords of header that specify the soil/rock spatial characterization for 3D simulation

Keyword	Description	M. U.	range	Default	Sca /	Log /
				Value	Vec	Num
PointID	identification code for the point			NA	vec	num
	of simulation					
CoordinatePointX	coordinate X if PixelCoordinates	m (according to the		NA	vec	num
	is 1, number of row of the matrix	geographical projec-				
	if PixelCoordinates is 0	tion of the maps)				
CoordinatePointY	coordinate Y if PixelCoordinates	m (according to the		NA	vec	num
	is 1, number of column of the ma-	geographical projec-				
	trix if PixelCoordinates is 1	tion of the maps)				

Table 7.8: Keywords of point characterization for the choice of point outputs in 3D simulations

General features

8.1 Input

8.1.1 File

Keyword	Description
TimeStepsFile	name of the file providing the integration time steps

Table 8.1: Keyword of file related to general input

8.1.2 Parameters

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
FlagSkyViewFactor	If not present, the sky view factor can be calculated (=1), or just be considered only equal to 1 (=0)	-	0, 1	0	sca	opt
TimeStepEnergyAndWater	Integrations time step [s] for energy and water balance equation (mandatory)	S	0, inf	NA	vec	num
InitDateDDMMYYYYhhmm	Date and time of the simulation start in date12 format (manda- tory)	format DDM- MYY- hhmm	01/01/1800 00:00, 01/01/2500 00:00	NA	vec	str
EndDateDDMMYYYYhhmm	Date and time of the simulation start in date12 format (manda- tory)	format DDM- MYY- hhmm	01/01/1800 00:00, 01/01/2500 00:00	NA	vec	str
NumSimulationTimes	How many times the simulation is run (if >1, it uses the final condition as initial conditions of the new simulation)	-	0, inf	1	vec	num
StandardTimeSimulation	Standard time to which all the output data are referred (difference respect UMT, in hours): GMT + x [h]	h	0, 12	0	sca	num
PointSim	Point simulation (=1), distributed simulation (=0)	-	0, 1	0	sca	opt
	continued on next	page				

8. General features 8.2. Output

continued from previous page						
Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
RecoverSim	Simulation recovered (=number of saving point you want to start from), otherwise (=0)	-	0, 1	0	sca	opt
WaterBalance	Activate water balance (Yes=1, No=0)	-		0	sca	opt
EnergyBalance	Activate energy balance (Yes=1, No=0)			0	sca	opt
PixelCoordinates	Write 1 IF ALL point coordinates are in format (East, North) in meter, or if in format row and colums (r,c) of the dem map	-		1	sca	opt
SavingPoints		-		NA	vec	num
SoilLayerTypes	Number of types of soil types, corresponding to different soil stratigraphies	-		1	sca	num
DefaultSoilTypeLand	given a multiple number of type of soil, this relates to the default given to the land type type	-		1	sca	num
DefaultSoilTypeChannel	given a multiple number of type of soil, this relates to the default given to the channel type	-		1	sca	num

Table 8.2: Keywords for the general parameters settable in geotop.inpts

8.2 Output

8.2.1 Maps parameters

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
FormatOutputMaps	Format of the output maps (=2 grass ascii, =3 esri ascii)	-	2, 3	3	sca	opt

Table 8.3: Keywords of general parameters regarding output options that may be set in geotop.inpts

Meteo Forcing

9.1 Input

9.1.1 Files

Keyword	Description
MeteoFile	name of the file providing the meteo forcing data
MeteoStationsListFile	name of the file providing the Meteo Station list
LapseRateFile	name of the file providing the Lapse rate
HorizonMeteoStationFile	name of the file providing the horizon of the meteo station

Table 9.1: Keywords of files related to meterological forcing

9.1.2 Parameters for meteo station

Keyword	Description	M. U.	range	Default	Sca	File
				Value	/Vec	
MeteoStationsID	Identification code	-		NA	vec	MeteoStationsListFiles
	for the meteo sta-					
	tion					
NumberOfMeteoStations	MeteoStations	-		1	sca	MeteoStationsListFiles
	ListFilesber of soil					
	Meteo Stations (is					
	calculated after the					
	number of compo-					
	nents of the vector					
	NumberOfMeteo-					
	Stations)					
MeteoStationCoordinateX	coordinate X of the	m		NA	vec	MeteoStationsListFiles
	meteo station					
MeteoStationCoordinateY	coordinate Y of the	m		NA	vec	MeteoStationsListFiles
	meteo station					
MeteoStationLatitude	Latitude of the me-	degree		Latitude	vec	MeteoStationsListFiles
	teo station					
MeteoStationLongitude	Longitude of the	degree		Longitude	vec	MeteoStationsListFiles
	meteo station					
MeteoStationElevation	Latitude of the me-	m		0	vec	MeteoStationsListFiles
	teo station	a.s.l.				
	continued of	on next pa	ge	•		·

9. Meteo Forcing 9.1. Input

	continued from	n previous	s page			
Keyword	Description	M. U.	range	Default Value	Sca /Vec	File
MeteoStationSkyViewFactor	Sky view factor of the meteo station	-		1	vec	MeteoStationsListFiles
MeteoStationStandardTime	Time difference of the meteo records with respect to Greenwich Meridiam Time (GMT). Note that the CET, Central European Time, is GMT+1 for Standard Time and GMT+2 for Summer Time	h		Standard Time Simula- tion	vec	MeteoStationsListFiles
MeteoStationWindVelocitySensorHeight	Height of the wind velocity sensor of the meteo station	m a.g.l		10	vec	MeteoStationsListFiles
MeteoStationTemperatureSensorHeight	Height of the air temperature sensor of the meteo sta- tion	m a.g.l		2	vec	MeteoStationsListFiles

Table 9.2: Keywords for the description of the meteorological station. All values are numeric. Note that m a.s.l. stands for meters above the sea level and m a.g.l. stands for meters above the ground level.

9.1.3 Headers for meteo station

Keyword	Description	Associated file	type (file,
			header)
HeaderIDMeteoStation	column name in the file MeteoFile	MeteoFile	header
HeaderMeteoStationCoordinateX	column name in the file MeteoFile	MeteoFile	header
HeaderMeteoStationCoordinateY	column name in the file MeteoFile	MeteoFile	header
HeaderMeteoStationLatitude	column name in the file MeteoFile	MeteoFile	header
HeaderMeteoStationLongitude	column name in the file MeteoFile	MeteoFile	header
HeaderMeteoStationElevation	column name in the file MeteoFile	MeteoFile	header
HeaderMeteoStationSkyViewFactor	column name in the file MeteoFile	MeteoFile	header
HeaderMeteoStationStandardTime	column name in the file MeteoFile	MeteoFile	header

Table 9.3: Keywords of headers that specify the meteo station characteristics

9.1.4 Parameters for meteo forcing

Keyword	Description	M. U.	range	Default	Sca /	Associated
				Value	Vec	file
Vmin	Minimum wind velocity (too low wind speeds may create numerical problems)	m s ⁻¹	0, 100	0.5	sca	geotop.inpts
	continued on next page					

9.1. Input 9. Meteo Forcing

	continued from previous page					
Keyword	Description	M. U.	range	Default	Sca /	Associated
				Value	Vec	fie
RHmin	Minimum relative humidity (too low	%	0, 100	10	sca	geotop.inpts
	relative humidities may create numer-					
	ical problems)					
RainCorrFactor	correction factor precipitated rain	-	1,2	1	sca	geotop.inpts
LapseRateTemp	Lapse rate of air temperature with el-	°C km ⁻¹		NA	vec	LapseRate
	evation					File
LapseRateDewTemp	Lapse rate of dew temperature with el-	°C km ⁻¹		NA	vec	LapseRate
	evation					File
LapseRatePrec	Lapse rate of precipitation with eleva-	${\rm mm}{\rm h}^{-1}{\rm km}^{-1}$		NA	vec	LapseRate
	tion					File

Table 9.4: Keywords for the description of the meteorological data. All values are numeric.

9.1.5 Headers for meteo forcing

Each meteo variable must be identified by a header in the *MeteoFile* and the header name may be identified by the keywords specified in Table 9.5.

Keyword	Description	Associated file	M.U. of the
H. I. D. DDI GGGGGG		3.6	data
HeaderDateDDMMYYYYhhmmMeteo	column name in the file MeteoFile	MeteoFile	DD/MM/YYYY
	for the variable DateDDMMYYY-		hh:mm
	hhmmMeteo		
HeaderJulianDayfrom0Meteo	column name in the file MeteoFile	MeteoFile	day
	for the variable julian day from 0		
HeaderIPrec	column name in the file MeteoFile	MeteoFile	${ m mm~h^{-1}}$
	for the variable precipitation		
HeaderWindVelocity	column name in the file MeteoFile	MeteoFile	m s ⁻¹
	for the variable wind speed		
HeaderWindDirection	column name in the file MeteoFile	MeteoFile	°N
	for the variable wind direction		
HeaderWindX	column name in the file MeteoFile	MeteoFile	m s ⁻¹
	for the variable wind X		
HeaderWindY	column name in the file MeteoFile	MeteoFile	m s ⁻¹
	for the variable wind Y		
HeaderRH	column name in the file MeteoFile	MeteoFile	%
	for the variable Relative humidity		
HeaderAirTemp	column name in the file MeteoFile	MeteoFile	°C
•	for the variable Air Temperature		
HeaderDewTemp	column name in the file MeteoFile	MeteoFile	°C
1	for the variable Dew temperature		
HeaderAirPress	column name in the file MeteoFile	MeteoFile	mbar
	for the variable Air Pressure		
HeaderSWglobal	column name in the file MeteoFile	MeteoFile	$\mathrm{W}\mathrm{m}^{-2}$
	for the variable SW global		
HeaderSWdirect	column name in the file MeteoFile	MeteoFile	$\mathrm{W}\mathrm{m}^{-2}$
Treaders // direct	for the variable Swdirect	1,100001110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HeaderSWdiffuse	column name in the file MeteoFile	MeteoFile	$\mathrm{W}\mathrm{m}^{-2}$
Tieudels Wallage	for the variable Swdiffuse	Wicked he	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HeaderCloudSWTransmissivity	column name in the file MeteoFile	MeteoFile	_
Treader Clouds W Transmissivity	for the variable transmissivity of	Tricteor fic	
	SW through cloud		
	continued on next page		

	continued from previous page					
Keyword	Description	Associated file	M.U. of the data			
HeaderCloudFactor	column name in the file MeteoFile for the variable cloud factor	MeteoFile	-			
HeaderLWin	column name in the file MeteoFile for the variable LW in	MeteoFile	$ m W~m^{-2}$			
HeaderSWnet	column name in the file MeteoFile for the variable SW net	MeteoFile	$\mathrm{W}~\mathrm{m}^{-2}$			
HeaderDateDDMMYYYYhhmmLapseRates	column name in the file LapseRate- File for the variable Date	LapseRateFile	DD/MM/YYYY hh:mm			
HeaderLapseRateTemp	column name in the file LapseRate- File for the variable air temperature	LapseRateFile	see LapseR- ateTemp			
HeaderLapseRateDewTemp	column name in the file LapseRate- File for the variable dew tempera- ture	LapseRateFile	see LapseRat- eDewTemp			
HeaderLapseRatePrec	column name in the file LapseRate- File for the variable precipitation	LapseRateFile	see LapseR- atePrec			

Table 9.5: Headers of meteorological forcing (meteo data - character)

9.2 Spatial distribution of meteorological forcing

9.2.1 Parameters

Keyword	Description	M. U.	range	Default	Sca /	Num /
				Value	Vec	Opt
Iobsint	Let Micromet determine an appropriate	-		1	sca	opt
	"radius of influence" (=0), or define the					
	"radius of influence" you want the model					
	to use (=1). 1=use obs interval below,					
	0=use model generated interval.					
Dn	The "radius of influence" or "observa-	-		1	sca	num
	tion interval" you want the model to use					
	for the interpolation. In units of deltax,					
	deltay.					
SlopeWeight	Weight assigned to the slope (as tangent	-	0 - 1	0	sca	num
	when it is <1) in the spatial distribution					
	of the wind speed					
CurvatureWeight	Weight assigned to the curvature (as sec-	-		0	sca	num
	ond derivative of the topographic surface)					
	in the spatial distribution of the wind					
	speed. Valid slope and curve weights val-					
	ues are between 0 and 1, with values of					
	0.5 giving approximately equal weight to					
	slope and curvature. The suggestion is					
	that slopewt and curvewt be set such that					
	slopewt + curvewt = 1.0 . This will limit					
	the total wind weight to between 0.5 and					
	1.5 (this is not stricktly required)					
SlopeWeightD				0	sca	num
CurvatureWeightD				0	sca	num
SlopeWeightI				0	sca	num
CurvatureWeightI				0	sca	num
	continued on next	t page				

9.3. Output 9. Meteo Forcing

continued from previous page						
Keyword	Description	M. U.	range	Default	Scalar	Num /
				Value	/	Opt
					Vector	

Table 9.6: Table of spatial distribution method parameters (numeric)

9.3 Output

9.3.1 **Point**

File

Keyword	Description
PointOutputFile	name of the output file providing the Point values
PointOutputFileWriteEnd	name of the output file providing the Point values writ-
	ten just once at the end

Table 9.7: Keywords of output files to visualize meteorological forcing on the simulation points

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
DefaultPoint	0: use personal setting (see Table of	-	0, 1	1	sca	opt
	headers), 1:use default headers					
DtPlotPoint	Plotting Time step (in hour) of the out-	h	0, inf	0	vec	num
	put for specified grid points (0 means					
	the it is not plotted)					
DatePoint	column number in which one	-	1, 76	-1	sca	num
	would like to visualize the					
	Date12[DDMMYYYY hhmm]					
JulianDayFromYear0Point	column number in which one	-	1, 76	-1	sca	num
	would like to visualize the Julian-					
	DayFromYear0[days]					
TimeFromStartPoint	column number in which one would	-	1, 76	-1	sca	num
	like to visualize the TimeFrom-					
	Start[days]					
PeriodPoint	column number in which one would	-	1, 76	-1	sca	num
	like to visualize the Simulation_Period					
RunPoint	column number in which one would	-	1, 76	-1	sca	num
	like to visualize the Run					
IDPointPoint	column number in which one would	-	1, 76	-1	sca	num
	like to visualize the IDpoint					
PsnowPoint	column number in which one	-	1, 76	-1	sca	num
	would like to visualize the					
	Psnow_over_canopy[mm]					
PrainPoint	column number in which one	-	1, 76	-1	sca	num
	would like to visualize the					
	Prain_over_canopy[mm]					
	continued on next	page				

9. Meteo Forcing 9.3. Output

	continued from previ	ous page				
Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
PsnowNetPoint	column number in which one would like to visualize the Psnow_under_canopy[mm]	-	1, 76	-1	sca	num
PrainNetPoint	column number in which one would like to visualize the Prain_under_canopy[mm]	-	1, 76	-1	sca	num
PrainOnSnowPoint	column number in which one would like to visualize the Prain_rain_on_snow[mm]	-	1, 76	-1	sca	num
WindSpeedPoint	column number in which one would like to visualize the Wind_speed[m/s]	-	1, 76	-1	sca	num
WindDirPoint	column number in which one would like to visualize the Wind_direction[deg]	-	1, 76	-1	sca	num
RHPoint	column number in which one would like to visualize the Relative_Humidity[-]	-	1, 76	-1	sca	num
AirPressPoint	column number in which one would like to visualize the Pressure[mbar]	-	1, 76	-1	sca	num
AirTempPoint	column number in which one would like to visualize the Tair[°C]	-	1, 76	-1	sca	num
TDewPoint	column number in which one would like to visualize the Tdew[°C]	-	1, 76	-1	sca	num
TsurfPoint	column number in which one would like to visualize the Tsurface[°C]	-	1, 76	-1	sca	num

Table 9.8: Table of point output (numeric)

Headers

Keyword	Description	Output file
HeaderDatePoint	column name in the file PointOutput-	PointOutputFile
	File for the variable DatePoint	
HeaderJulianDayFromYear0Point	column name in the file PointOut-	PointOutputFile
	putFile for the variable Julian-	
	DayFromYear0Point	
HeaderTimeFromStartPoint	column name in the file PointOutput-	PointOutputFile
	File for the variable TimeFromStart-	
	Point	
HeaderPeriodPoint	column name in the file PointOutput-	PointOutputFile
	File for the variable PeriodPoint	
HeaderRunPoint	column name in the file PointOutput-	PointOutputFile
	File for the variable RunPoint	
HeaderIDPointPoint	column name in the file PointOutput-	PointOutputFile
	File for the variable IDPointPoint	
HeaderCanopyFractionPoint	column name in the file PointOutput-	PointOutputFile
	File for the variable CanopyFraction-	
	Point	
HeaderPsnowPoint	column name in the file PointOutput-	PointOutputFile
	File for the variable PsnowPoint	
HeaderPrainPoint	column name in the file PointOutput-	PointOutputFile
	File for the variable PrainPoint	
	continued on next page	

9.3. Output 9. Meteo Forcing

C	continued from previous page				
Keyword	Description	Associated file			
HeaderPrainNetPoint	column name in the file PointOutput-	PointOutputFile			
	File for the variable PrainNetPoint				
HeaderPrainOnSnowPoint	column name in the file PointOutput-	PointOutputFile			
	File for the variable PrainOnSnowPoint				
HeaderWindSpeedPoint	column name in the file PointOutput-	PointOutputFile			
	File for the variable WindSpeedPoint				
HeaderWindDirPoint	column name in the file PointOutput-	PointOutputFile			
	File for the variable WindDirPoint				
HeaderRHPoint	column name in the file PointOutput-	PointOutputFile			
	File for the variable RHPoint				
HeaderAirPressPoint	column name in the file PointOutput-	PointOutputFile			
	File for the variable AirPressPoint				
HeaderAirTempPoint	column name in the file PointOutput-	PointOutputFile			
	File for the variable AirTempPoint				
HeaderTDewPoint	column name in the file PointOutput-	PointOutputFile			
	File for the variable TDewPoint				
HeaderTsurfPoint	column name in the file PointOutput-	PointOutputFile			
	File for the variable TsurfPoint				

Table 9.9: Table of meteorological parameters (character)

9.3.2 Maps

Map names

Keyword	Description	
SurfaceTempMapFile	name of the output file providing the surface temperature map	
PrecipitationMapFile	name of the output file providing the precipitation map	
AirTempMapFile	name of the output file providing the Air temperature map	
WindSpeedMapFile	name of the output file providing the Wind Speed map	
WindDirMapFile	name of the output file providing the Wind Direction map	
RelHumMapFile	name of the output file providing the Rel. Humidity map	
SpecificPlotSurfaceTempMapFile name of the output file providing the surface air temper		
	map at high temporal resolution during specific days	
SpecificPlotWindSpeedMapFile	name of the output file providing the wind speed map at high	
	temporal resolution during specific days	
SpecificPlotWindDirMapFile	name of the output file providing the wind direction map at high	
	temporal resolution during specific days	
SpecificPlotRelHumMapFile	name of the output file providing the relative humidity map at	
	high temporal resolution during specific days	

Table 9.10: Keywords of names of meteorological forcing maps

Keyword	Description	M. U.	range	Default Value	Sca / Vec
OutputMeteoMaps	frequency (h) of printing of the results of the meteo maps	h		0	sca
continued on next page					

9. Meteo Forcing 9.3. Output

	continued from previous page						
Keyword	Description	M. U.	range	Default Value	Sca / Vec		
SpecialPlotBegin	date of begin of plotting of the special output	format DDMMYY hhmm	01/01/1800 00:00, 01/01/2500 00:00	0	vec		
SpecialPlotEnd	date of end of plotting of the special output	format DDMMYY hhmm	01/01/1800 00:00, 01/01/2500 00:00	0	vec		

Table 9.11: Keywords for parameters of printing details for meteo maps

Glacier

10.1 Input

10.1.1 Parameters

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
IrriducibleWatSatGlacier	irreducible water saturation for	-		0.02	sca	num
	glacier					
MaxWaterEqGlacLayerContent	maximum water equivalent ad-			5	sca	num
	mitted in a snow layer					
MaxGlacLayerNumber	maximum layers of snow to use			0	sca	num
	(suggested >5)					
ThickerGlacLayers	Layer numbers that can be-			Max Glac	vec	num
	come thicker than admitted			Layer		
	by the threshold given by			Number/2		
	MaxGlacLayerNumber (from					
	the bottom up). They can be					
	more than one					

Table 10.1: Keywords of glacier input parametrs configurable in geotop.inpts file.

10.2 Output

10.2.1 Point output

Files

Keyword	Description			
GlacierProfileFile	name of the output file providing the glacier instantaneous values at			
	various depths			
GlacierProfileFileWriteEnd	fileFileWriteEnd name of the output file providing the glacier instantaneous values at			
	various depths written just once at the end			
PointOutputFile	name of the file providing the properties for the simulation point			
PointOutputFileWriteEnd	name of the output file providing the Point values written just once at			
	the end			

Table 10.2: Keywords of file related to glacier

10.2. Output

Headers

Keyword	Description	Associated file
HeaderDateGlac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable Date	
HeaderJulianDayFromYear0Glac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable Julian Day from 0	
HeaderTimeFromStartGlac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable Time from start	
HeaderPeriodGlac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable Simulation period	
HeaderRunGlac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable Run	
HeaderIDPointGlac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable IDPoint	
HeaderTempGlac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable temperature	
HeaderIceContentGlac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable ice content	
HeaderWatContentGlac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable liquid content	
HeaderDepthGlac	column name in the file GlacierProfileFile for the	GlacierProfileFile
	variable Depth	

Table 10.3: Keywords of the personalized header for the file GlacierProfileFile

Keyword	Description	Associated file
HeaderGlacDepthPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	GlacDepthPoint	
HeaderGWEPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	GWEPoint	
HeaderGlacDensityPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	GlacDensityPoint	
HeaderGlacTempPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	GlacTempPoint	
HeaderGlacMeltedPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	GlacMeltedPoint	
HeaderGlacSublPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	GlacSublPoint	

Table 10.4: Keywords of the personalized header for the file PointOutputFile

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
DefaultGlac	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
GlacPlotDepths	depths of the glacier where one wants	-		NA	vec	num
	to write the results					
continued on next page						

10.2. Output

	continued from previous page						
Keyword	Description	M. U.	range	Default	Sca /	Str/Num	
				Value	Vec	/ Opt	
DateGlac	column number in which one would	-		-1	sca	num	
	like to visualize the Date12 [DDM-						
	MYYYYhhmm]						
JulianDayFromYear0Glac	column number in which one	-		-1	sca	num	
	would like to visualize the Julian-						
	DayFromYear0[days]						
TimeFromStartGlac	column in which one would like to	-		-1	sca	num	
	visualize the TimeFromStart[days]						
PeriodGlac	Column number to write the period	-		-1	sca	num	
	number						
RunGlac	Column number to write the run	-		-1	sca	num	
	number						
IDPointGlac	column number in which one would	-		-1	sca	num	
	like to visualize the IDpoint						
WaterEquivalentGlac	column number in which one would	-		-1	sca	num	
-	like the water equivalent of the						
	glacier						
DepthGlac	column number in which one would	-		-1	sca	num	
	like to visualize the depth of the						
	glacier						
DensityGlac	column number in which one would	-		-1	sca	num	
	like to visualize the density of the						
	glacier						
TempGlac	column number in which one would	-		-1	sca	num	
	like to visualize the temperature of						
	the glacier						
IceContentGlac	column number in which one would	-		-1	sca	num	
	like to visualize the ice content of the						
	glacier						
WatContentGlac	column number in which one would	-		-1	sca	num	
	like to visualize the water content of						
	the glacier						

Table 10.5: Keywords defining the column number where printing the desired variable in the GlacierProfileFile

Keyword	Description	M. U.	range	Default	Sca /	Log /
				Value	Vec	Num
DtPlotPoint	Plotting Time step (in hour) of the output	h	0, inf	0	vec	num
	for specified pixels (0 means the it is not					
	plotted)					
DatePoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Date12 [DDMMYYYY					
	hhmm]					
JulianDayFromYear0Point	column number in which one	-	1, 76	-1	sca	num
	would like to visualize the Julian-					
	DayFromYear0[days]					
TimeFromStartPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the TimeFromStart[days]					
PeriodPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Simulation_Period					
RunPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Run					
	continued on next p	age	·			

10.2. Output

	continued from previous page							
Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num		
IDPointPoint	column number in which one would like to visualize the IDpoint	-	1, 76	-1	sca	num		
GlacDepthPoint	column number in which one would like to visualize the glacier depth [mm]	-	1, 76	-1	sca	num		
GWEPoint	column number in which one would like to visualize the glacier water equivalent [mm]	-	1, 76	-1	sca	num		
GlacDensityPoint	column number in which one would like to visualize the glacier density [kg m ⁻³]	-	1, 76	-1	sca	num		
GlacTempPoint	column number in which one would like to visualize the glacier temperature [°C]	-	1, 76	-1	sca	num		
GlacMeltedPoint	column number in which one would like to visualize the glac_melted [mm]	-	1, 76	-1	sca	num		
GlacSublPoint	column number in which one would like to visualize the glacier sublimated depth [mm]	-	1, 76	-1	sca	num		

Table 10.6: Keywords defining the column number where to print the desired variable in the PointOutputFile

10.2.2 Map Output

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
DefaultGlac	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
GlacPlotDepths	depths of the glacier where one wants	-		NA	vec	num
	to write the results					
OutputGlacierMaps	frequency (h) of printing of the re-	h		0	sca	num
	sults of the glacier maps					

Table 10.7: Keywords of frequency for printing glacier output maps

Snow

11.1 Input

11.1.1 Parameters

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Str/Num /Opt
RoughElemXUnitArea	Number of roughness ele- ments (=vegetation) per unit area - used only for blowing snow subroutines	Number m ⁻²	0, inf	0	sca	num
RoughElemDiam	Diameter of the roughness el- ements (=vegetation) - used only for blowing snow sub- routines	mm	0, inf	50	sca	num
AlphaSnow	Alpha (SNTHERM parameter) for the freezing characteristic soil for snow, the bigger, the steeper the curve around 0 degrees	-		1.00E+05	sca	num
ThresTempRain	dew or air temperature above which all precipitation is rain	°C		3	sca	num
ThresTempSnow	dew or air temperature below which all precipitation is rain	°C		-1	sca	num
DewTempOrNormTemp	Use dew temperature (1) or air temperature (0) to dis- criminate between snowfall and rainfall	-	1 or 0	0	sca	opt
AlbExtParSnow	albedo extinction parameter (aep): if snow depth < aep, albedo is interpolated be- tween soil and snow	mm		10	sca	num
FreshSnowReflVis	visible band reflectance of fresh snow	-		0.9	sca	num
FreshSnowReflNIR	near infrared band re- flectance of fresh snow	-		0.65	sca	num
IrriducibleWatSatSnow	Irreducible water saturation. It is the ratio of the capillarity-hold water to ice content in the snow.	-	0.02 - 0.07	0.02	sca	num
SnowEmissiv	snow long wave emissivity			0.98	sca	num

11. Snow 11.1. Input

Description	M. U.	range	Default	Sca /	Str/Num
	I				1
			Value	Vec	/ Opt
Roughness length over snow	mm		0.1	sca	num
			1	sca	num
			0.7		
	-		0.7	sca	num
			1		
	_		1	sca	num
	kg m ⁻³		100	sca	num
	Kg III		100	sca	IIIIII
_					
	_		1.5	sca	num
_			1.3	sca	IIIIII
	N c		1.00F±06	sca	num
			1.00L100	sca	IIIIII
	""				
	m		1000	sca	num
	***		1000	Sea	l IIIII
~					
	m		100	sca	num
_					
	kg m ⁻²		0	sca	num
olds					
Time step [s] at which the	s		TimeStep	sca	num
Prairie Blowing Snow Model			Energy		
is run			AndWater		
minimum slope [degree] to	degree		30	sca	num
adjust precipitation reduction					
maximum slope [degree] to	degree		80	sca	num
adjust precipitation reduction					
	-		-200	sca	num
adjustment is not applied)					
maximum water equivalent	${ m kg}~{ m m}^{-2}$		5	sca	num
admitted in a snow layer					
			10	sca	num
use (suggested >10)					
Layer numbers that can			Max Snow	vec	num
become thicker than admit-			Layer		
ted by the threshold given			Number/2		
by MaxSnowLayerNumber					
	-		0	sca	opt
ule (yes=1, no=0)	1			I	
	correction factor on fresh snow accumulation maximum snow porosity allowed. This parameter prevents excessive snow densification snow compaction (% per hour) due to destructive metamorphism for snow density < SnowDensityCutoff and dry snow snow density cutoff to change snow deformation rate enhancement factor in presence of wet snow snow viscosity coefficient (kg s m ⁻²) at T=0 C and snow density=0 scaling fetch in case snow wind transport in increasing [m] scaling fetch in case snow wind transport in decreasing [m] Snow depth (in ice water equivalent), the averaged density of which is used for blowing snow wind thresholds Time step [s] at which the Prairie Blowing Snow Model is run minimum slope [degree] to adjust precipitation reduction maximum slope [degree] to adjust precipitation reduction shape parameter for precipitation reduction (if <0 the adjustment is not applied) maximum water equivalent admitted in a snow layer maximum layers of snow to use (suggested > 10) Layer numbers that can become thicker than admitted by the threshold given by MaxSnowLayerNumber (from the bottom up). They can be more than one Activate blowing snow mod-	correction factor on fresh snow accumulation maximum snow porosity allowed. This parameter prevents excessive snow densification snow compaction (% per hour) due to destructive metamorphism for snow density < SnowDensityCutoff and dry snow snow density cutoff to change snow deformation rate enhancement factor in presence of wet snow snow viscosity coefficient (kg s m ⁻²) at T=0 C and snow density=0 scaling fetch in case snow wind transport in increasing [m] scaling fetch in case snow wind transport in decreasing [m] Snow depth (in ice water equivalent), the averaged density of which is used for blowing snow wind thresholds Time step [s] at which the Prairie Blowing Snow Model is run minimum slope [degree] to adjust precipitation reduction maximum slope [degree] to adjust precipitation reduction shape parameter for precipitation reduction (if <0 the adjustment is not applied) maximum water equivalent admitted in a snow layer maximum layers of snow to use (suggested >10) Layer numbers that can become thicker than admitted by the threshold given by MaxSnowLayerNumber (from the bottom up). They can be more than one Activate blowing snow mod-	correction factor on fresh snow accumulation maximum snow porosity allowed. This parameter prevents excessive snow densification snow compaction (% per hour) due to destructive metamorphism for snow density < SnowDensityCutoff and dry snow snow density cutoff to change snow deformation rate enhancement factor in presence of wet snow snow viscosity coefficient (kg s m ⁻²) at T=0 C and snow density=0 scaling fetch in case snow wind transport in increasing [m] scaling fetch in case snow wind transport in decreasing [m] Snow depth (in ice water equivalent), the averaged density of which is used for blowing snow wind thresholds Time step [s] at which the Prairie Blowing Snow Model is run minimum slope [degree] to adjust precipitation reduction maximum slope [degree] to adjust precipitation reduction shape parameter for precipitation reduction (if <0 the adjustment is not applied) maximum water equivalent admitted in a snow layer maximum water equivalent admitted in a snow layer maximum water equivalent admitted in a snow layer maximum layers of snow to use (suggested >10) Layer numbers that can become thicker than admitted by the threshold given by MaxSnowLayerNumber (from the bottom up). They can be more than one Activate blowing snow mod-	correction factor on fresh snow accumulation maximum snow porosity allowed. This parameter prevents excessive snow densification snow compaction (% per hour) due to destructive metamorphism for snow density < SnowDensityCutoff and dry snow snow density cutoff to change snow deformation rate enhancement factor in presence of wet snow snow viscosity coefficient (kg s m ⁻²) at T=0 C and snow density=0 scaling fetch in case snow wind transport in increasing [m] Snow depth (in ice water equivalent), the averaged density of which is used for blowing snow wind thresholds Time step [s] at which the Prairie Blowing Snow Model is run minimum slope [degree] to adjust precipitation reduction maximum slope [degree] to adjust precipitation reduction shape parameter for precipitation reduction (if <0 the adjust precipitation reduction maximum layers of snow to use (suggested > 10) Layer numbers that can become thicker than admitted by the threshold given by MaxSnowLayerNumber (from the bottom up). They can be more than one Activate blowing snow mod-	correction factor on fresh snow accumulation maximum snow porosity allowed. This parameter prevents excessive snow densification snow compaction (% per hour) due to destructive metamorphism for snow density < SnowDensityCutoff and dry snow snow density cutoff to change snow deformation rate enhancement factor in presence of wet snow viscosity coefficient (kg s m ⁻²) at T=0 C and snow density=0 scaling fetch in case snow wind transport in increasing [m] scaling fetch in case snow wind transport in decreasing [m] Snow depth (in ice water equivalent), the averaged density of which is used for blowing snow wind thresholds Time step [s] at which the Prairie Blowing Snow Model is run minimum slope [degree] to adjust precipitation reduction maximum slope [degree] to adjust precipitation reduction maximum slope [degree] to adjust precipitation reduction ishape parameter for precipitation reduction reduction reduction (if <0 the adjust precipitation reduction shape parameter for precipitation reduction (if <0 the adjustment is not applied) maximum water equivalent admitted in a snow layer maximum layers of snow to use (suggested > 10) Layer numbers that can become thicker than admitted by the threshold given by MaxSnowLayerNumber (from the bottom up). They can be more than one Activate blowing snow mod-

11.2. Output 11. Snow

continued from previous page							
Keyword	Description	M. U.	range	Default	Sca /	Str/Num	
				Value	Vec	/ Opt	
PointMaxSWE	Max snow water equivalent	${\rm kg}~{\rm m}^{-2}$		NA	vec	num	
	that can be reached in the						
	simulation point						
SnowAgingCoeffVis	reflectance of the new snow	-		0.2	sca	num	
	in the visible wave length						
SnowAgingCoeffNIR	reflectance of the new snow	-		0.5	sca	num	
	in the infrared wave length						

Table 11.1: Keywords of snow input parameters configurable in geotop.inpts file.

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
ThresSnowSoilRough	Threshold on snow depth to change	mm	0,	10	vec	num
	roughness to snow roughness values		1000			
	with d0 set at 0, for bare soil fraction					
ThresSnowVegUp	Threshold on snow depth above	mm	0,	1000	vec	num
	which the roughness is snow rough-		20000			
	ness, for vegetation fraction					
ThresSnowVegDown	Threshold on snow depth below	mm	0,	1000	vec	num
	which the roughness is vegetation		20000			
	roughness, for vegetation fraction					

Table 11.2: Keywords of snow characteristics that may be set in geotop.inpts. Each parameter may be given in input as a vector, each component representing the value corresponding to the LandCoverMapFile value identified by the vector index

11.2 Output

11.2.1 Point output

Files

Keyword	Description
SnowProfileFile	name of the output file providing the snow instantaneous values at various depths
SnowProfileFileWriteEnd	name of the output file providing the snow instantaneous values at various depths written
	just once at the end
SnowCoveredAreaFile	Name of the output file containing the percentage of the area covered by snow
PointOutputFile	name of the file providing the properties for the simulation point
PointOutputFileWriteEnd	name of the output file providing the Point values written just once at the end

Table 11.3: Keywords of file related to snow / glacier

Headers

Keyword	Description	Associated file			
continued on next page					

11. Snow 11.2. Output

	continued from previous page	
Keyword	Description	Associated file
HeaderDateSnow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able Date	
HeaderJulianDayFromYear0Snow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able Julian Day from 0	
HeaderTimeFromStartSnow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able Time from start	
HeaderPeriodSnow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able Simulation period	
HeaderRunSnow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able Run	
HeaderIDPointSnow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able IDPoint	
HeaderTempSnow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able temperature	
HeaderIceContentSnow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able ice content	
HeaderWatContentSnow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able liquid content	
HeaderDepthSnow	column name in the file SnowProfileFile for the vari-	SnowProfileFile
	able Depth	

Table 11.4: Keywords of the personalized header for the file SnowProfileFile

Keyword	Description	Associated file
HeaderPsnowNetPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	PsnowNetPoint	
HeaderSnowDepthPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	SnowDepthPoint	
HeaderSWEPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	SWEPoint	
HeaderSnowDensityPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	SnowDensityPoint	
HeaderSnowTempPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	SnowTempPoint	
HeaderSnowMeltedPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	SnowMeltedPoint	
HeaderSnowSublPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	SnowSublPoint	
HeaderSWEBlownPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	SWEBlownPoint	
HeaderSWESublBlownPoint	column name in the file PointOutputFile for the variable	PointOutputFile
	SWESublBlownPoint	

Table 11.5: Keywords of the personalized header for the file PointOutputFile

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Str/Num /Opt	
continued on next page							

11.2. Output 11. Snow

	continued from previous page						
Keyword	Description	M. U.	range	Default	Sca /	Str/Num	
DefaultSnow	0 defect		0.1	Value	Vec	/ Opt	
	0: use personal setting, 1:use default	-	0, 1	1	sca	opt	
SnowPlotDepths	depths of the glacier where one wants to write the results	-		NA	vec	num	
DateSnow	column number in which one would like to visualize the Date12 [DDM-MYYYYhhmm]	-		-1	sca	num	
JulianDayFromYear0Snow	column number in which one would like to visualize the Julian- DayFromYear0[days]	-		-1	sca	num	
TimeFromStartSnow	column in which one would like to visualize the TimeFromStart[days]	-		-1	sca	num	
PeriodSnow	Column number to write the period number	-		-1	sca	num	
RunSnow	Column number to write the run number	-		-1	sca	num	
IDPointSnow	column number in which one would like to visualize the IDpoint	-		-1	sca	num	
WaterEquivalentSnow	column number in which one would like the water equivalent of the snow	-		-1	sca	num	
DepthSnow	column number in which one would like to visualize the depth of the snow	-		-1	sca	num	
DensitySnow	column number in which one would like to visualize the density of the snow	-		-1	sca	num	
TempSnow	column number in which one would like to visualize the temperature of the snow	-		-1	sca	num	
IceContentSnow	column number in which one would like to visualize the ice content of the snow	-		-1	sca	num	
WatContentSnow	column number in which one would like to visualize the water content of the snow	-		-1	sca	num	

Table 11.6: Keywords defining the column number where printing the desired variable in the SnowProfileFile

Keyword	Description	M. U.	range	Default	Sca /	Log /
				Value	Vec	Num
DefaultPoint	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
DtPlotPoint	Plotting Time step (in hour) of the output	h	0, inf	0	vec	num
	for specified pixels (0 means the it is not					
	plotted)					
DatePoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Date12[DDMMYYYY					
	hhmm]					
JulianDayFromYear0Point	column number in which one	-	1, 76	-1	sca	num
	would like to visualize the Julian-					
	DayFromYear0[days]					
TimeFromStartPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the TimeFromStart[days]					
PeriodPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Simulation_Period					
continued on next page						

11. Snow 11.2. Output

	continued from previou	ıs page				
Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
RunPoint	column number in which one would like to visualize the Run	-	1, 76	-1	sca	num
IDPointPoint	column number in which one would like to visualize the IDpoint	-	1, 76	-1	sca	num
SnowDepthPoint	column number in which one would like to visualize the snow_depth[mm]	-	1, 76	-1	sca	num
SWEPoint	column number in which one would like to visualize the snow_water_equivalent [mm]	-	1, 76	-1	sca	num
SnowDensityPoint	column number in which one would like to visualize the snow_density[kg/ ³]	-	1, 76	-1	sca	num
SnowTempPoint	column number in which one would like to visualize the snow_temperature[°C]	-	1, 76	-1	sca	num
SnowMeltedPoint	column number in which one would like to visualize the snow_melted[mm]	-	1, 76	-1	sca	num
SnowSublPoint	column number in which one would like to visualize the snow_subl[mm]	-	1, 76	-1	sca	num
SWEBlownPoint	column number in which one would like to visualize the snow_blown_away[mm]	-	1, 76	-1	sca	num
SWESublBlownPoint	column number in which one would like to visualize the snow_subl_while_blown [mm]	-	1, 76	-1	sca	num

Table 11.7: Keywords defining the column number where printing the desired variable in the PointOutputFile

11.2.2 Map Output

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
DefaultSnow	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
SnowPlotDepths	depths of the glacier where one wants	-		NA	vec	num
	to write the results					
OutputSnowMaps	frequency (h) of printing of the re-	h		0	sca	num
	sults of the snow maps					

Table 11.8: Keywords of frequency for printing snow output maps settable in geotop.inpts

Vegetation

12.1 Input

12.1.1 Parameters

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
VegHeight	vegetation height	mm	0, 20000	1000	vec	num
LSAI	Leaf and Stem Area Index $[L^2/L^2]$	-	0, 1	1	vec	num
CanopyFraction	Canopy fraction [0: no canopy in the pixel, 1: pixel fully covered by canopy]	-	0, 1	0	vec	num
DecayCoeffCanopy	Decay coefficient of the eddy diffusivity profile in the canopy	-	0, inf	2.5	vec	num
VegSnowBurying	Coefficient of the exponential snow burying of vegetation	-	0, inf	1	vec	num
RootDepth	Root depth (it is used to calculate root_fraction for each layer, it must be positive)	mm	0, inf	300	vec	num
MinStomatalRes	Minimum stomatal resistance	$\mathrm{s}\ m^{-1}$	0, inf	60	vec	num
VegReflectVis	Vegetation reflectivity in the visible	-	0, 1	0.2	vec	num
VegRefINIR	Vegetation reflectivity in the near in- frared	-	0, 1	0.2	vec	num
VegTransVis	Vegetation transmissimity in the visible	-	0, 1	0.2	vec	num
VegTransNIR	Vegetation transmissimity in the near infrared	-	0, 1	0.2	vec	num
LeafAngles	Departure of leaf angles from a ran- dom distribution (1 horizontal, 0 ran- dom, -1 vertical)	-	-1, 0, 1	0	vec	opt
CanDensSurface	Surface density of canopy	kg m ⁻² LSAI ⁻¹	0, inf	2	vec	num

Table 12.1: Keywords of vegetation characteristics that may be set in geotop.inpts. Each parameter may be given in input as a vector, each component representing the value corresponding to the LandCoverMapFile value identified by the vector index

12.2 Numerics

12. Vegetation 12.3. Output

Keyword	Description	M. U.	range	Default	Scalar	Logical
				Value	/ Vec-	/ Nu-
					tor	meric
CanopyMaxIter	Max number of iterations for (vegeta-			3	sca	num
	tion energy balance equation)					
LocMaxIter	Max number of iterations for the cal-	-		3	sca	num
	culation of the within-canopy Monin-					
	Obukhov length (vegetation energy bal-					
	ance equation)					
TsMaxIter	Max number of iterations for the calcu-	-		2	sca	num
	lation of canopy air temperature (vege-					
	tation energy balance equation)					
CanopyStabCorrection	Use of the stability corrections within	-		1	sca	opt
	canopy (=1), otherwise (=0)					
BusingerMaxIter	Max number of iterations for Monin-	-		5	sca	num
	Obulhov stability algorithm -Businger					
	parameterization (surface energy bal-					
	ance equation)					

Table 12.2: Keywords of input numeric parameters for the energy equation regarding vegetation routines settable in geotop.inpts

12.3 Output

12.3.1 Point

Files

Keyword	Description
TimeDependentVegetationParameterFile	name of the file providing the time dependent vegetation parameters
PointOutputFile	name of the file providing the properties for the simulation point
PointOutputFileWriteEnd	name of the output file providing the Point values written just once at
_	the end

Table 12.3: Keywords of file related to vegetation

Headers

Keyword	Description	Associated file			
HeaderTvegPoint	column name in the file PointOutputFile for the	PointOutputFile			
	variable TvegPoint				
HeaderTCanopyAirPoint	column name in the file PointOutputFile for the	PointOutputFile			
	variable TCanopyAirPoint				
HeaderLSAIPoint	column name in the file PointOutputFile for the	PointOutputFile			
	variable LSAIPoint				
Headerz0vegPoint	column name in the file PointOutputFile for the	PointOutputFile			
	variable z0vegPoint				
Headerd0vegPoint	column name in the file PointOutputFile for the	PointOutputFile			
	variable d0vegPoint				
HeaderEstoredCanopyPoint	column name in the file PointOutputFile for the	PointOutputFile			
	variable EstoredCanopyPoint				
continued on next page					

12.3. Output

continued from previous page					
Keyword	Description	Associated file			
HeaderSWvPoint	column name in the file PointOutputFile for the variable SWvPoint	PointOutputFile			
HeaderLWvPoint	column name in the file PointOutputFile for the variable LWvPoint	PointOutputFile			
HeaderHvPoint	column name in the file PointOutputFile for the variable HvPoint	PointOutputFile			
HeaderLEvPoint	column name in the file PointOutputFile for the variable LEvPoint	PointOutputFile			
HeaderHgUnvegPoint	column name in the file PointOutputFile for the variable HgUnvegPoint	PointOutputFile			
HeaderLEgUnvegPoint	column name in the file PointOutputFile for the variable LEgUnvegPoint	PointOutputFile			
HeaderHgVegPoint	column name in the file PointOutputFile for the variable HgVegPoint	PointOutputFile			
HeaderLEgVegPoint	column name in the file PointOutputFile for the variable LEgVegPoint	PointOutputFile			
HeaderEvapSurfacePoint	column name in the file PointOutputFile for the variable EvapSurfacePoint	PointOutputFile			
HeaderTraspCanopyPoint	column name in the file PointOutputFile for the variable TraspCanopyPoint	PointOutputFile			
HeaderWaterOnCanopyPoint	column name in the file PointOutputFile for the variable WaterOnCanopyPoint	PointOutputFile			
HeaderSnowOnCanopyPoint	column name in the file PointOutputFile for the variable SnowOnCanopyPoint	PointOutputFile			
HeaderQVegPoint	column name in the file PointOutputFile for the variable specific humidity near the vegetation	PointOutputFile			
HeaderLObukhovCanopyPoint	column name in the file PointOutputFile for the variable LObukhovCanopyPoint	PointOutputFile			
HeaderWindSpeedTopCanopyPoint	column name in the file PointOutputFile for the variable WindSpeedTopCanopyPoint	PointOutputFile			
HeaderDecayKCanopyPoint	column name in the file PointOutputFile for the variable DecayKCanopyPoint	PointOutputFile			

Table 12.4: Keywords of the personalized headers for the PointOutputFile

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num	
DefaultPoint	0: use personal setting, 1:use default	-	0, 1	1	sca	opt	
DtPlotPoint	Plotting Time step (in hour) of the output for specified pixels (0 means the it is not plotted)	h	0, inf	0	vec	num	
DatePoint	column number in which one would like to visualize the Date12[DDMMYYYY hhmm]	-	1,76	-1	sca	num	
JulianDayFromYear0Point	column number in which one would like to visualize the Julian-DayFromYear0[days]	-	1, 76	-1	sca	num	
TimeFromStartPoint	column number in which one would like to visualize the TimeFrom-Start[days]	-	1, 76	-1	sca	num	
continued on next page							

12. Vegetation 12.3. Output

	continued from previou			T = a -	T ~	T =
Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log Num
PeriodPoint	column number in which one would like to visualize the Simulation_Period	-	1, 76	-1	sca	num
RunPoint	column number in which one would like to visualize the Run	-	1, 76	-1	sca	num
IDPointPoint	column number in which one would like to visualize the IDpoint	-	1, 76	-1	sca	num
TvegPoint	column number in which one would like to visualize the Tvegetation[°C]	-	1, 76	-1	sca	num
TCanopyAirPoint	column number in which one would like to visualize the Tcanopyair[°C]	-	1, 76	-1	sca	num
CanopyFractionPoint	column number in which one would like to visualize the Canopy_fraction	-	1, 76	-1	sca	num
LSAIPoint	column number in which one would like to visualize the LSAI[m²/m²]	-	1, 76	-1	sca	num
z0vegPoint	column number in which one would like to visualize the z0veg[m]	-	1, 76	-1	sca	num
d0vegPoint	column number in which one would like to visualize the d0veg[m]	-	1, 76	-1	sca	num
EstoredCanopyPoint	column number in which one would like to visualize the Estored_canopy[W/m2]	-	1, 76	-1	sca	num
SWvPoint	column number in which one would like to visualize the SWv[W/m²]	-	1, 76	-1	sca	num
LWvPoint	column number in which one would like to visualize the LWv[W/m²]	-	1, 76	-1	sca	num
HvPoint	column number in which one would like to visualize the Hv[W/m²]	-	1, 76	-1	sca	num
LEvPoint	column number in which one would like to visualize the LEv[W/m²]	-	1, 76	-1	sca	num
HgUnvegPoint	column number in which one would like to visualize the Hg_unveg[W/m ²]	-	1, 76	-1	sca	num
LEgUnvegPoint	column number in which one would like to visualize the LEg_unveg[W/m²]	-	1, 76	-1	sca	num
HgVegPoint	column number in which one would like to visualize the Hg_veg[W/m²]	-	1, 76	-1	sca	num
LEgVegPoint	column number in which one would like to visualize the LEg_veg[W/m²]	-	1, 76	-1	sca	num
TraspCanopyPoint	column number in which one would like to visualize the Trasp_canopy[mm]	-	1, 76	-1	sca	num
WaterOnCanopyPoint	column number in which one would like to visualize the Water_on_canopy[mm]	-	1, 76	-1	sca	num
SnowOnCanopyPoint	column number in which one would like to visualize the Snow_on_canopy[mm]	-	1, 76	-1	sca	num
QVegPoint	column number in which one would like to visualize the specific hu- midity near the vegetation (grams vapour/grams air)	-	1,76	-1	sca	num
QCanopyAirPoint	column number in which one would like to visualize the specific humid- ity at the canopy-air interface (grams vapour/grams air)	-	1, 76	-1	sca	num

12.3. Output 12. Vegetation

	continued from previous page							
Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num		
LObukhovCanopyPoint	column number in which one would like to visualize the LObukhov-canopy[m]	-	1, 76	-1	sca	num		
WindSpeedTopCanopyPoint	column number in which one would like to visualize the Wind_speed_top_canopy [m/s]	-	1, 76	-1	sca	num		
DecayKCanopyPoint	column number in which one would like to visualize the Decay_of_K_in_canopy[-]	-	1, 76	-1	sca	num		

Table 12.5: Keywords defining the column number where to plot the desired variable in the PointOutputFile

12.3.2 Map Output

Parameters

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Str/Num /Opt
OutputVegetationMaps	frequency (h) of printing of the results of the vegetation maps	h		0	sca	num

Table 12.6: Keywords of frequency for printing vegetation output maps settable in geotop.inpts

Files

Keyword	Description
CanopyInterceptedWaterMapFile	name of the output file providing the canopy intercepted water map
SpecificPlotVegSensibleHeatFluxMapFile	name of the output file providing the vegetation sensible heat flux map at high
	temporal resolution during specific days
SpecificPlotVegLatentHeatFluxMapFile	name of the output file providing the vegetation latent heat flux map at high
	temporal resolution during specific days
SpecificPlotNetVegShortwaveRadMapFile	name of the output file providing the vegetation Swnet flux map at high temporal
	resolution during specific days
SpecificPlotNetVegLongwaveRadMapFile	name of the output file providing the vegetation Lwnet map at high temporal
	resolution during specific days
SpecificPlotCanopyAirTempMapFile	name of the output file providing the canopy air temperature map at high tem-
	poral resolution during specific days
SpecificPlotVegTempMapFile	name of the output file providing the vegetation temperature map at high tem-
	poral resolution during specific days
SpecificPlotAboveVegAirTempMapFile	name of the output file providing the above vegetation air temperature map at
	high temporal resolution during specific days

Table 12.7: Keywords of file related to vegetation (map)

12. Vegetation 12.3. Output

Surface Fluxes

13.1 Input

13.1.1 Parameters

Keyword	Description	M. U.	range	Default	Sca /	Logical /
				Value	Vec	Numeric
LWinParameterization	Which formula for incoming long-		1, 2,	9	sca	opt
	wave radiation: 1 (Brutsaert, 1975),		, 9			
	2 (Satterlund, 1979), 3 (Idso, 1981),					
	4(Idso+Hodges), 5 (Koenig-Langlo					
	& Augstein, 1994), 6 (Andreas					
	& Ackley, 1982), 7 (Konzelmann,					
	1994), 8 (Prata, 1996), 9 (Dilley					
	1998)					
MoninObukhov	Atmospherical stability parameter: 1			1	sca	num
	stability and instability considered, 2					
	stability not considered, 3 instability					
	not considered, 4 always neutrality					
Surroundings	Yes(1), No(0)	-		0	sca	opt
NumLandCoverTypes	Number of Classes of land cover.	-	1, inf	1	sca	num
	Each land cover type corresponds to a					
	particular land-cover state, described					
	by a specific set of values of the pa-					
	rameters listed below. Each set of					
	land cover parameters will be dis-					
	tributively assigned according to the					
	land cover map, which relates each					
	pixel with a land cover type num-					
	ber. This number corresponds to the					
	number of component in the numeri-					
	cal vector that is assigned to any land					
	cover parameters listed below.					

Table 13.1: Keywords of parameters regarding the surface energy fluxes calculation

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Str/Num / Opt		
continued on next page								

13. Surface Fluxes

continued from previous page						
Keyword	Description		range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
SoilRoughness	Roughness length of soil surface	mm	0,	10	vec	num
			1000			
SoilAlbVisDry	Ground surface albedo without snow	-	0, 1	0.2	vec	num
	in the visible - dry					
SoilAlbNIRDry	Ground surface albedo without snow	-	0, 1	0.2	vec	num
	in the near infrared - dry					
SoilAlbVisWet	Ground surface albedo without snow	-	0, 1	0.2	vec	num
	in the visible - saturated					
SoilAlbNIRWet	Ground surface albedo without snow	-	0, 1	0.2	vec	num
	in the near infrared - saturated					
SoilEmissiv	Ground surface emissivity	-	0, 1	0.96	vec	num

Table 13.2: Keywords of land cover characteristics affecting surface energy fluxes that may be set in geotop.inpts. Each parameter may be given in input as a vector, each component representing the value corresponding to the LandCoverMapFile value identified by the vector index

13.2 Numerics

Keyword	Description	M. U.	range	Default Value	Scalar / Vec-	Logical / Nu-
					tor	meric
BusingerMaxIter	Max number of iterations for Monin-	-		5	sca	num
	Obulhov stability algorithm -Businger					
	parameterization (surface energy bal-					
	ance equation)					

Table 13.3: Keywords of input numeric parameters for the energy equation regarding vegetation routines settable in geotop.inpts

13.3 Output

13.3.1 Point

Files

Keyword	Description
PointOutputFile	name of the file providing the properties for the simulation point
PointOutputFileWriteEnd	name of the output file providing the Point values written just once at the end

Table 13.4: Keywords of file related to point output variables

Headers

Keyword	Description	Associated file	
continued on next page			

13.3. Output 13. Surface Fluxes

	continued from previous page	
Keyword	Description	Associated file
HeaderSurfaceEBPoint	column name in the file PointOutputFile for the variable SurfaceEBPoint	PointOutputFile
HeaderSoilHeatFluxPoint	column name in the file PointOutputFile for the variable SoilHeatFluxPoint	PointOutputFile
HeaderSWinPoint	column name in the file PointOutputFile for the variable SWinPoint	PointOutputFile
HeaderSWbeamPoint	column name in the file PointOutputFile for the variable SWbeamPoint	PointOutputFile
HeaderSWdiffPoint	column name in the file PointOutputFile for the variable SWdiffPoint	PointOutputFile
HeaderLWinPoint	column name in the file PointOutputFile for the variable LWinPoint	PointOutputFile
HeaderLWinMinPoint	column name in the file PointOutputFile for the variable LWinMinPoint	PointOutputFile
HeaderLWinMaxPoint	column name in the file PointOutputFile for the variable LWinMaxPoint	PointOutputFile
HeaderSWNetPoint	column name in the file PointOutputFile for the variable SWNetPoint	PointOutputFile
HeaderLWNetPoint	column name in the file PointOutputFile for the variable LWNetPoint	PointOutputFile
HeaderHPoint	column name in the file PointOutputFile for the variable HPoint	PointOutputFile
HeaderLEPoint	column name in the file PointOutputFile for the variable LEPoint	PointOutputFile
HeaderQSurfPoint	column name in the file PointOutputFile for the variable specific humidity near the soil surface	PointOutputFile
HeaderQAirPoint	column name in the file PointOutputFile for the variable specific humidity of the air	PointOutputFile
HeaderLObukhovPoint	column name in the file PointOutputFile for the variable LObukhovPoint	PointOutputFile
HeaderSWupPoint	column name in the file PointOutputFile for the variable SWupPoint	PointOutputFile
HeaderLWupPoint	column name in the file PointOutputFile for the variable LWupPoint	PointOutputFile
HeaderHupPoint	column name in the file PointOutputFile for the variable HupPoint	PointOutputFile
HeaderLEupPoint	column name in the file PointOutputFile for the variable LEupPoint	PointOutputFile

Table 13.5: Keywords defining the headers to personalize for the output related to surface flux in the PointOutputFile

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
DefaultPoint	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
DtPlotPoint	Plotting Time step (in hour) of THE OUTPUT FOR SPECIFIED PIXELS (0 means the it is not plotted)	h	0, inf	0	vec	num
DatePoint column number in which one would like to visualize the Date12[DDMMYYYY hhmm] 1,76 -1 sca num				num		
	continued on r	ext page				

13. Surface Fluxes

JulianDayFromYear0Point column number in which would like to visualize the J DayFromYear0[days] TimeFromStartPoint column number in which one like to visualize the Time Start[days] PeriodPoint column number in which one like to visualize the Simulation I column number in which one like to visualize the Run IDPointPoint column number in which one like to visualize the IDpoint TsurfPoint column number in which one like to visualize the Timelof Would like to visualize the IDpoint SurfaceEBPoint column number in which one like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which one like to visualize the Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWin[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] LWinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the LWin_min[V] LWin_max[W/m²] SWNetPoint column number in which one like to visualize the LWin_min[V] LWin_max[W/m²] SWNetPoint column number in which one like to visualize the LWintel W/m² LWin_max[w/m²] SWNetPoint column number in which one like to visualize the LWintel W/m² LWin_max[w/m²] SWNetPoint column number in which one like to visualize the Swnet[w/m²] LEPoint column number in which one like to visualize the Swnet[w/m²] LEPoint column number in which one like to visualize the LE[w/m²] Column number in which one like to visualize the LE[w/m²] Column number in which one like to visualize the LE[w/m²]	vould - vould - vould - vould -	1, 76 1, 76 1, 76	Default Value -1 -1	Sca Vec sca	/ Log Num num
would like to visualize the J DayFromYear0[days] TimeFromStartPoint column number in which one like to visualize the Timel Start[days] PeriodPoint column number in which one like to visualize the Simulation I RunPoint column number in which one like to visualize the Run IDPointPoint column number in which one like to visualize the IDpoint TsurfPoint column number in which one like to visualize the Tsurface[**C SurfaceEBPoint column number in which one like to visualize the face_Energy_balance [W/m**] SoilHeatFluxPoint column number in which would like to visualize the face_Energy_balance [W/m**] SwinPoint column number in which one like to visualize the SWin[W/m**] SWinPoint column number in which one like to visualize the SWbeam[W SWbeamPoint column number in which one like to visualize the SWdiff[W/n LWinPoint column number in which one like to visualize the LWin[W/m**] LWinMinPoint column number in which one like to visualize the LWin_min[V LWinMaxPoint column number in which one like to visualize the LWin_min[V LWin_max[W/m**] SWNetPoint column number in which one like to visualize the SWnet[W/n LWinLWin column number in which one like to visualize the LWint[W/m**] SWNetPoint column number in which one like to visualize the LWnet[W/n LWinLWin column number in which one like to visualize the LWnet[W/n**] EvapSurfacePoint column number in which one like to visualize the LE[W/m**] EvapSurfacePoint column number in which one like to visualize the LE[W/m**] OSurfPoint column number in which one like to visualize the LE[W/m**] OSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/	vould - vould - eriod vould -	1, 76	-1	sca	num
would like to visualize the J DayFromYear0[days] TimeFromStartPoint column number in which one like to visualize the Timel Start[days] PeriodPoint column number in which one like to visualize the Simulation I RunPoint column number in which one like to visualize the Run IDPointPoint column number in which one like to visualize the IDpoint TsurfPoint column number in which one like to visualize the Tsurface[°C SurfaceEBPoint column number in which would like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize the soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWheam[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W/m²] SWdiffPoint column number in which one like to visualize the LWin[W/m²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMaxPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²]	vould - vould - eriod vould -	1, 76	-1		
TimeFromStartPoint DayFromYear0[days]	vould - vould - vould - vould -	,		sca	num
TimeFromStartPoint column number in which one like to visualize the Timel Start[days] PeriodPoint column number in which one like to visualize the Simulation I column number in which one like to visualize the Run IDPointPoint column number in which one like to visualize the IDpoint Column number in which one like to visualize the IDpoint Column number in which one like to visualize the Tsurface[°C Column number in which would like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which one like to visualize the Swin[W/m²] SWinPoint column number in which one like to visualize the SWheam[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W/m²] SWdiffPoint column number in which one like to visualize the LWin[W/m²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMaxPoint column number in which one like to visualize the LWin[W/m²] SWNetPoint column number in which one like to visualize the LWin[W/m²] SWNetPoint column number in which one like to visualize the LWin[W/m²] SWNetPoint column number in which one like to visualize the LWintel (would like to visualize the LE[W/m²] EvapSurfacePoint column number in which one like to visualize the specific hity at the surface (grams vapour/	vould - eriod -	,		sca	num
like to visualize the Timel Start[days] PeriodPoint column number in which one like to visualize the Simulation I column number in which one like to visualize the Run column number in which one like to visualize the IDpoint TsurfPoint column number in which one like to visualize the Tsurface[°C SurfaceEBPoint column number in which one like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize the face_Energy_balance [W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWin[W/m²] SWdiffPoint column number in which one like to visualize the SWdiff[W/n²] LWinPoint column number in which one like to visualize the LWin_min[V] LWinMinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the LWintel (W/m²) LWinLamax[W/m²] SWNetPoint column number in which one like to visualize the H[W/m²] LWotePoint column number in which one like to visualize the LWnet[W/m²] LWotePoint column number in which one like to visualize the LWnet[W/m²] LEPoint column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the specific hity at the surface (grams vapour/	vould - eriod -	,		Sea	110111
PeriodPoint column number in which one like to visualize the Simulation I column number in which one like to visualize the Run IDPointPoint column number in which one like to visualize the IDpoint TsurfPoint column number in which one like to visualize the IDpoint TsurfPoint column number in which one like to visualize the Tsurface[°C Column number in which would like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWdiff[W/r column number in which one like to visualize the LWin[W/m²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the LWnet[W/m²] SWNetPoint column number in which one like to visualize the LWnet[W/m²] LWint column number in which one like to visualize the LWnet[W/m²] Column number in which one like to visualize the LE[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the specific hity at the surface (grams vapour/	vould - eriod vould -	1, 76	1		1
PeriodPoint column number in which one like to visualize the Simulation I column number in which one like to visualize the Run ilke to visualize the Run ilke to visualize the Run ilke to visualize the IDpoint column number in which one like to visualize the IDpoint column number in which one like to visualize the Tsurface Column number in which would like to visualize the face_Energy_balance [W/m²] column number in which one like to visualize the SWin[W/m²] SwinPoint column number in which one like to visualize the SWin[W/m²] column number in which one like to visualize the SWeam[W] column number in which one like to visualize the SWdiff[W/n²] column number in which one like to visualize the LWin[W/m²] column number in which one like to visualize the LWin[W/m²] column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the SWnet[W/m²] swin_max[W/m²] swin_max[W/m²] column number in which one like to visualize the LWnet[W/m²] column number in which one like to visualize the LWnet[W/m²] column number in which one like to visualize the LWnet[W/m²] column number in which one like to visualize the LWnet[W/m²] column number in which one like to visualize the LWnet[W/m²] column number in which one like to visualize the LE[W/m²] column number in which one like to visualize the LE[W/m²] column number in which one like to visualize the LE[W/m²] column number in which one like to visualize the specific hity at the surface (grams vapour/m²) column number in which one like to visualize the specific hity at the surface (grams vapour/m²).	eriod vould -	1, 76	1		
RunPoint column number in which one like to visualize the Run column number in which one like to visualize the Run column number in which one like to visualize the IDpoint column number in which one like to visualize the Tsurface of Column number in which one like to visualize the Tsurface of Column number in which would like to visualize the face_Energy_balance [W/m²] column number in which one like to visualize the Swin [W/m²] SwinPoint column number in which one like to visualize the Swin [W/m²] SwinPoint column number in which one like to visualize the Swbeam [W/m²] column number in which one like to visualize the Swbeam [W/m²] Column number in which one like to visualize the Lwin [W/m²] Lwin Min Point column number in which one like to visualize the Lwin [W/m²] SwnetPoint column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Lwin [w/m²] Column number in which one like to visualize the Le[w/m²] Column number in which one like to visualize the Le[w/m²] Column number in which one like to visualize the Le[w/m²] Column number in which one like to visualize the Le[w/m²] Column number in which one like to visualize the Le[w/m²] Column number in which one like to visualize the Le[w/m²] Column number in which one like to visualize the Le[w/m²] Column number in which one like to visualize the Le[w/m²]	eriod vould -	1, 70	1 -1	sca	num
RunPoint column number in which one like to visualize the Run TsurfPoint column number in which one like to visualize the IDpoint TsurfPoint column number in which one like to visualize the Tsurface[°C SurfaceEBPoint column number in which would like to visualize the face Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWdiff[W/m²] SWdiffPoint column number in which one like to visualize the SWdiff[W/m²] LWinPoint column number in which one like to visualize the LWin_min[V] LWinMinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the LWin_min[V] LWinLWint column number in which one like to visualize the LWint one like to visualize the LE[W/m²] column number in which one like to visualize the LE[W/m²] column number in which one like to visualize the LE[W/m²] column number in which one like to visualize the LE[W/m²] column number in which one like to visualize the LE[W/m²] column number in which one like to visualize the specific hity at the surface (grams vapour/	vould -		1	Sca	l iidiii
like to visualize the Run IDPointPoint column number in which one like to visualize the IDpoint TsurfPoint column number in which one like to visualize the Tsurface[°C SurfaceEBPoint column number in which would like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W] SWdiffPoint column number in which one like to visualize the SWdiff[W/m²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[W] LWinMaxPoint column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the LWnet[W/m²] LWNetPoint column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the LWnet[W/m²] Column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/		1, 76	-1	sca	num
IDPointPoint column number in which one like to visualize the IDpoint column number in which one like to visualize the Tsurface[°C SurfaceEBPoint column number in which would like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W SWdiffPoint column number in which one like to visualize the SWdiff[W/n²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMaxPoint column number in which one like to visualize the LWin_min[V LWinMaxPoint column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/m²] Column number in which one like to visualize the LWnet[W/m²] Column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] Column number in which one like to visualize the LWnet[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²]	ould -	1, 70	-1	sca	liuiii
Ilike to visualize the IDpoint Column number in which one like to visualize the Tsurface[°C SurfaceEBPoint column number in which would like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWinPoint column number in which one like to visualize the SWbeam[W SWbeamPoint column number in which one like to visualize the SWdiff[W/m²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[V LWinMaxPoint column number in which one like to visualize the LWin_min[V LWin_max[W/m²]] SWNetPoint column number in which one like to visualize the SWnet[W/m²] LWNetPoint column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/	voulu -	1, 76	-1	sca	num
TsurfPoint column number in which one like to visualize the Tsurface[°C SurfaceEBPoint column number in which would like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W SWdiffPoint column number in which one like to visualize the SWdifff[W/m²] Column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[W LWinMaxPoint column number in which one like to visualize the LWin_min[W LWinMaxPoint column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²]		1, 70	-1	sca	IIuiii
SurfaceEBPoint column number in which would like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W SWdiffPoint column number in which one like to visualize the SWdiff[W/m²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[V Column number in which one like to visualize the LWin_min[V Column number in which one like to visualize the LWin_min[V Column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/	vould -	1, 76	-1	sca	num
SurfaceEBPoint column number in which would like to visualize the face_Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W] SWdiffPoint column number in which one like to visualize the SWdiff[W/m²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the SWnet[W/n column number in which one like to visualize the SWnet[W/n would like to visualize the SWnet[W/n column number in which one like to visualize the LWnet[W/n column number in which one like to visualize the LWnet[W/n column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] column number in which one like to visualize the specific hity at the surface (grams vapour/	I	1, 70	-1	Sca	IIuIII
would like to visualize the face Energy_balance [W/m²] SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W column number in which one like to visualize the SWdiff[W/n²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[V column number in which would like to visualize LWin_max[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/m²] LWNetPoint column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/	one -	1, 76	-1	sca	num
SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W] SWbeamPoint column number in which one like to visualize the SWbeam[W] SWdiffPoint column number in which one like to visualize the SWdiff[W/m²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/m²] LWNetPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/		1, 70	-1	sca	num
SoilHeatFluxPoint column number in which would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W] SWdiffPoint column number in which one like to visualize the SWdiff[W/n²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[W] LWinMaxPoint column number in which one like to visualize the SWnet[W/n²] SWNetPoint column number in which one like to visualize the SWnet[W/n²] LWNetPoint column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the specific hity at the surface (grams vapour/	Sui-				
would like to visualize Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W column number in which one like to visualize the SWdiff[W/n²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[W column number in which one like to visualize the LWin_min[W column number in which one like to visualize the SWnet[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/m²] LWNetPoint column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/	one -	1, 76	-1	222	
Soil_heat_flux[W/m²] SWinPoint column number in which one like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W] SWdiffPoint column number in which one like to visualize the SWdiff[W/n²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[W] LWinMaxPoint column number in which one like to visualize the SWnet[W/n²] SWNetPoint column number in which one like to visualize the SWnet[W/n²] LWNetPoint column number in which one like to visualize the LWnet[W/m²] EvapSurfacePoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/	the -	1, 70	-1	sca	num
SWinPoint Column number in which one like to visualize the SWin[W/m²] SWbeamPoint Column number in which one like to visualize the SWbeam[W] SWdiffPoint Column number in which one like to visualize the SWdiff[W/n²] LWinPoint Column number in which one like to visualize the LWin[W/m²] LWinMinPoint Column number in which one like to visualize the LWin_min[W] LWinMaxPoint Column number in which one like to visualize the LWin_max[W/m²] SWNetPoint Column number in which one like to visualize the SWnet[W/n] LWNetPoint Column number in which one like to visualize the LWnet[W/n] HPoint Column number in which one like to visualize the H[W/m²] EvapSurfacePoint Column number in which would like to visualize the LE[W/m²] LEPoint Column number in which one like to visualize the LE[W/m²] QSurfPoint Column number in which one like to visualize the specific hity at the surface (grams vapour/	the				
like to visualize the SWin[W/m²] SWbeamPoint column number in which one like to visualize the SWbeam[W] SWdiffPoint column number in which one like to visualize the SWdiff[W/n²] LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[W] LWinMaxPoint column number in which would like to visualize LWin_max[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/n] LWNetPoint column number in which one like to visualize the LWnet[W/n] HPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/	1.1	1, 76	-1		
SWbeamPoint column number in which one like to visualize the SWbeam[W Column number in which one like to visualize the SWdiff[W/r Column number in which one like to visualize the LWin[W/m Column number in which one like to visualize the LWin_min[W Column number in which one like to visualize the LWin_min[W Column number in which would like to visualize LWin_max[W/m²] SWNetPoint Column number in which one like to visualize the SWnet[W/m Column number in which one like to visualize the LWnet[W/m Column number in which one like to visualize the H[W/m²] EvapSurfacePoint Column number in which one like to visualize the H[W/m²] EvapSurfacePoint Column number in which one like to visualize the LE[W/m²] Column number in which one like to visualize the LE[W/m²] QSurfPoint Column number in which one like to visualize the specific hity at the surface (grams vapour/	vould -	1, /6	-1	sca	num
like to visualize the SWbeam[W SWdiffPoint column number in which one like to visualize the SWdiff[W/r LWinPoint column number in which one like to visualize the LWin[W/m LWinMinPoint column number in which one like to visualize the LWin_min[V LWinMaxPoint column number in which would like to visualize LWin_max[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/n LWNetPoint column number in which one like to visualize the LWnet[W/n HPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/		1.76	1		
SWdiffPoint Column number in which one like to visualize the SWdiff[W/r column number in which one like to visualize the LWin[W/m²] LWinMinPoint Column number in which one like to visualize the LWin_min[V] LWinMaxPoint Column number in which would like to visualize LWin_max[W/m²] SWNetPoint Column number in which one like to visualize the SWnet[W/n] LWNetPoint Column number in which one like to visualize the LWnet[W/n] HPoint Column number in which one like to visualize the H[W/m²] EvapSurfacePoint Column number in which would like to visualize the Would like to visualize Evap_surface[mm] LEPoint Column number in which one like to visualize the LE[W/m²] QSurfPoint Column number in which one like to visualize the specific hity at the surface (grams vapour/		1, 76	-1	sca	num
like to visualize the SWdiff[W/r LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which would like to visualize LWin_max[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/n] LWNetPoint column number in which one like to visualize the LWnet[W/n] HPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/	-				
LWinPoint column number in which one like to visualize the LWin[W/m²] LWinMinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which would like to visualize LWin_max[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/n] LWNetPoint column number in which one like to visualize the LWnet[W/n] HPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize the H[W/m²] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/		1, 76	-1	sca	num
LWinMinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which would like to visualize LWin_max[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/n] LWNetPoint column number in which one like to visualize the LWnet[W/n] HPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/					
LWinMinPoint column number in which one like to visualize the LWin_min[V] LWinMaxPoint column number in which would like to visualize LWin_max[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/n] LWNetPoint column number in which one like to visualize the LWnet[W/n] HPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/		1, 76	-1	sca	num
like to visualize the LWin_min[V] LWinMaxPoint					
LWinMaxPoint column number in which would like to visualize LWin_max[W/m²] SWNetPoint column number in which one like to visualize the SWnet[W/n] LWNetPoint column number in which one like to visualize the LWnet[W/n] HPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which one like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/		1, 76	-1	sca	num
would like to visualize LWin_max[W/m²] SWNetPoint column number in which one wilke to visualize the SWnet[W/n] LWNetPoint column number in which one wilke to visualize the LWnet[W/n] HPoint column number in which one wilke to visualize the H[W/m²] EvapSurfacePoint column number in which one would like to visualize Evap_surface[mm] LEPoint column number in which one wilke to visualize the LE[W/m²] QSurfPoint column number in which one wilke to visualize the specific hity at the surface (grams vapour/					
LWin_max[W/m²] SWNetPoint column number in which one wilke to visualize the SWnet[W/m²] LWNetPoint column number in which one wilke to visualize the LWnet[W/m²] HPoint column number in which one wilke to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one wilke to visualize the LE[W/m²] QSurfPoint column number in which one wilke to visualize the specific hity at the surface (grams vapour/	one -	1, 76	-1	sca	num
SWNetPoint column number in which one like to visualize the SWnet[W/n column number in which one like to visualize the LWnet[W/n column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/	the				
like to visualize the SWnet[W/n LWNetPoint column number in which one slike to visualize the LWnet[W/n HPoint column number in which one slike to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one slike to visualize the LE[W/m²] QSurfPoint column number in which one slike to visualize the specific h ity at the surface (grams vapour/					
LWNetPoint column number in which one like to visualize the LWnet[W/m Column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific hity at the surface (grams vapour/		1, 76	-1	sca	num
like to visualize the LWnet[W/m					
HPoint column number in which one like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific h ity at the surface (grams vapour/		1, 76	-1	sca	num
like to visualize the H[W/m²] EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific h ity at the surface (grams vapour/					
EvapSurfacePoint column number in which would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific h ity at the surface (grams vapour/	vould -	1, 76	-1	sca	num
would like to visualize Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific h ity at the surface (grams vapour/					
Evap_surface[mm] LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific h ity at the surface (grams vapour/	one -	1, 76	-1	sca	num
LEPoint column number in which one like to visualize the LE[W/m²] QSurfPoint column number in which one like to visualize the specific h ity at the surface (grams vapour/	the				
QSurfPoint like to visualize the LE[W/m²] Column number in which one will like to visualize the specific hity at the surface (grams vapour/					
QSurfPoint column number in which one like to visualize the specific h ity at the surface (grams vapour/	vould -	1, 76	-1	sca	num
like to visualize the specific h ity at the surface (grams vapour/					
like to visualize the specific h ity at the surface (grams vapour/	vould -	1, 76	-1	sca	num
ity at the surface (grams vapour/	ımid-				
411)					
QAirPoint column number in which one		1, 76	-1	sca	num
like to visualize the specific hur	vould -				
at air (grams vapour/grams air)					
LObukhovPoint column number in which one		1, 76	-1	sca	num
like to visualize the LObukhov[1	nidity	-,	-		

13.3. Output 13. Surface Fluxes

continued from previous page						
Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
SWupPoint	column number in which one would like to visualize the SWup[W/m ²]	-	1, 76	-1	sca	num
LWupPoint	column number in which one would like to visualize the LWup[W/m²]	-	1, 76	-1	sca	num
HupPoint	column number in which one would like to visualize the Hup[W/m ²]		1, 76	-1	sca	num
LEupPoint	column number in which one would like to visualize the LEup[W/m²]	-	1, 76	-1	sca	num

Table 13.6: Keywords defining which parameter to print on the PointOutputFile

13.3.2 Maps

Parameters

Keyword	Description	M. U.	range	Default Value	Sca / Vec
OutputSurfEBALMaps	frequency (h) of printing of	h		0	sca
	the results of the Surface				
	energy balance maps				

Table 13.7: Keywords for parameters of printing details for surface energy balance maps

File

Keyword	Description			
RadiationMapFile	name of the output file providing the Radiation map (all			
	the type of radiations)			
NetRadiationMapFile	name of the output file providing the Net Radiation map			
InLongwaveRadiationMapFile	name of the output file providing the LW Radiation map			
NetLongwaveRadiationMapFile	name of the output file providing the Net LW Radiation			
	map			
NetShortwaveRadiationMapFile	name of the output file providing the Net SW Radiation			
	map			
InShortwaveRadiationMapFile	name of the output file providing the Swin Radiation			
	map			
DirectInShortwaveRadiationMapFile	name of the output file providing the Swdir Radiation			
	map			
ShadowFractionTimeMapFile	name of the output file providing the map of the fraction			
	of Shadow in the time			
SurfaceHeatFluxMapFile	name of the output file providing the Surface heat flux			
	map			
SurfaceSensibleHeatFluxMapFile	name of the output file providing the Surface sensible			
	heat flux map			
SurfaceLatentHeatFluxMapFile	name of the output file providing the Surface latent heat			
	flux map			
SpecificPlotSurfaceHeatFluxMapFile	name of the output file providing the surface heat flux			
	map at high temporal resolution during specific days			
continued on next page				

13. Surface Fluxes 13.4. Values of reference

continued	from previous page
Keyword	Description
SpecificPlotTotalSensibleHeatFluxMapFile	name of the output file providing the total sensible heat
	flux map at high temporal resolution during specific
	days
SpecificPlotTotalLatentHeatFluxMapFile	name of the output file providing the total latent heat
	flux map at high temporal resolution during specific
	days
SpecificPlotSurfaceSensibleHeatFluxMapFile	name of the output file providing the surface sensible
	heat flux map at high temporal resolution during spe-
	cific days
SpecificPlotSurfaceLatentHeatFluxMapFile	name of the output file providing the surface latent heat
	flux map at high temporal resolution during specific
	days
SpecificPlotIncomingShortwaveRadMapFile	name of the output file providing the Swin flux map at
	high temporal resolution during specific days
SpecificPlotNetSurfaceShortwaveRadMapFile	name of the output file providing the surface Swnet flux
	map at high temporal resolution during specific days
SpecificPlotIncomingLongwaveRadMapFile	name of the output file providing the Lwin flux map at
	high temporal resolution during specific days
SpecificPlotNetSurfaceLongwaveRadMapFile	name of the output file providing the surface Lwnet map
	at high temporal resolution during specific days

Table 13.8: Keywords of output map files related to surface fluxes settable in geotop.inpts

13.4 Values of reference

Surface description	roughness z_0 [mm]	Reference
Mud flats, ice	0.01	Sutton (1953)
Smooth tarmac	0.02	<i>Bradley</i> (1968))
Large water surfaces	0.1 - 0.6	Numerous references
Grass (lawn up to 1 cm)	1	Sutton (1953)
Grass (artificial, 7.5 cm high)	10	Chamberlain (1966))
Grass (thick up to 10 cm high)	23	Sutton (1953)
Grass (thin up to 50 cm)	50	Sutton (1953)
Trees (10-15 m high)	400-700	Fichtl and McVehil (1970)
Large city	1650	YAMAMOTO and SHIMANUKI (1964)

Table 13.9: Example of roughness parameters for various surfaces *Brutsaert* (1982)

Radiative proprieties of natural materials p.13 Boundary Layer Climates - T.R.Oke Example of roughness parameters for various surfaces - Evaporation into the Atmosphere, Wilfried Brutsaert, 1984

13.4. Values of reference 13. Surface Fluxes

Surface	Remarks	Albedo	Emissivity
		α	ε
Soil	Dark, wet	0.05 -	0.98 -
	Light, dry	0.40	0.90
Desert		0.20 - 0.45	0.84 - 0.91
Grass	Long (1.0 m)	0.16 -	0.90 -
	Short (0.02 m	0.26	0.95
Agrigultural crops,		0.18 -	0.90 -
tundra		0.25	0.99
Orchards		0.15 - 0.20	
Forest			
Deciduos	Bare	0.15 -	0.97 -
	Leaved	0.20	0.98
Coniferous		0.05 - 0.15	0.97 - 0.99
Water	Small zenith angle	0.03 - 0.10	0.92 - 0.97
	Large zenith angle	0.10 - 1.00	0.92 - 0.97
Snow	Old	0.40 -	0.82 -
	Fresh	0.95	0.99
Ice	Sea	0.30 - 0.45	0.92 - 0.97
	Glacier	0.20 - 0.40	

Table 13.10: Radiative proprieties of natural materials

Surface description	z_0(cm)	Reference
Mud flats, ice	0.001	Sutton (1953)
Smooth tarmac	0.002	Bradley (1968)
Large water surfaces	0.01 - 0.06	Numerous references
Grass (lawn up to 1 cm)	0.1	Sutton (1953)
Grass (artificial, 7.5 cm high)	1.0	Chamberlain (1966)
Grass (thick up to 10 cm high)	2.3	Sutton (1953)
Grass (thin up to 50 cm)	5	Sutton (1953)
Trees (10-15 m high)	40-70	Fichtl and McVehil (1970)
Large city	165	Yamamoto and Shimanuki (1964)

Table 13.11: Example of roughness parameters for various surfaces (Evaporation into the Atmosphere, Wilfried Brutsaert, 1984)

13. Surface Fluxes 13.4. Values of reference

Soil/Rock Infiltration

14.1 Input

14.1.1 File

Keyword	Description	Associated file	type (file, header)
SoilParFile	name of the file providing the soil parameters	/	file

Table 14.1: Keywords of file related to soil and rock parameters

14.1.2 Headers

Keyword	Description	Associated file
HeaderPointSoilType	column name in the file PointFile for the soil type of the point	PointFile
HeaderSoilDz	column name in the file SoilParFile for the layers thickness	SoilParFile
HeaderNormalHydrConductivity	column name in the file SoilParFile for the normal hydraulic con-	SoilParFile
	ductivity	
HeaderLateralHydrConductivity	column name in the file SoilParFile for the lateral hydraulic con-	SoilParFile
	ductivity	
HeaderThetaRes	column name in the file SoilParFile for the residual water content	SoilParFile
HeaderWiltingPoint	column name in the file SoilParFile for the soil wilting point	SoilParFile
HeaderFieldCapacity	column name in the file SoilParFile for the field capacity	SoilParFile
HeaderThetaSat	column name in the file SoilParFile for the saturated water content	SoilParFile
HeaderAlpha	column name in the file alpha parameter of Van Genuchten	SoilParFile
HeaderN	column name in the file N parameter of Van Genuchten	SoilParFile
HeaderV	column name in the file V parameter of Van Genuchten	SoilParFile
HeaderSpecificStorativity	column name in the file specific storativity	SoilParFile

Table 14.2: Keywords of headers related to soil

14.1.3 Parameters

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Str/Num /Opt	
continued on next page							

14. Soil/Rock Infiltration 14.1. Input

continued from previous page							
Keyword	Description	M. U.	range	Default	Sca /	Str/Num	
				Value	Vec	/ Opt	
FrozenSoilHydrCondReduction	Ω : Reduction factor of the hydraulic	-	0, 7	2	sca	num	
	conductivity in partially frozen soil						
	$(K = K_{no_ice} * 10^{\Omega Q})$, where Q is						
	the ice ratio						

Table 14.3: Keywords for the description of soil

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
NormalHydrConductivity		mm		1.00E-04	vec	num
		s^{-1}				
LateralHydrConductivity		mm		1.00E-04	vec	num
		s^{-1}				
ThetaRes		-		0.05	vec	num
WiltingPoint		-		0.15	vec	num
FieldCapacity		-		0.25	vec	num
ThetaSat		-		0.5	vec	num
AlphaVanGenuchten		mm^{-1}		0.004	vec	num
NVanGenuchten		-		1.3	vec	num
VMualem		-		0.5	vec	num
SpecificStorativity		mm^{-1}		1.00E-07	vec	num

Table 14.4: Keywords of soil input parameters settable in geotop.inpts

Keyword	Description	M. U.	range	Default Value	Sca /	Str/Num
					Vec	/ Opt
FrozenSoilHydrCondReduction	Reduction factor of the	-	0, 7	2	sca	num
	hydraulic conductivity in					
	partially frozen soil $(K =$					
	$K_{no_ice} * 10^{impedenceQ},$					
	where Q is the ice ratio					
PointSoilType	Soil type of the simulation	-		NA	vec	num
	point					
NormalHydrConductivityBedrock		mm		1.00E-04	vec	num
		s^{-1}				
LateralHydrConductivityBedrock		mm		1.00E-04	vec	num
		s^{-1}				
ThetaResBedrock		-		0.05	vec	num
WiltingPointBedrock		-		0.15	vec	num
FieldCapacityBedrock		-		0.25	vec	num
ThetaSatBedrock		-		0.5	vec	num
AlphaVanGenuchtenBedrock		mm^{-1}		0.004	vec	num
NVanGenuchtenBedrock		-		1.3	vec	num
VMualemBedrock		-		0.5	vec	num
SpecificStorativityBedrock		mm^{-1}		1.00E-07	vec	num

Table 14.5: Keywords of soil input parameters settable in geotop.inpts

14.2. Output 14. Soil/Rock Infiltration

Numerics

Keyword	Description	M. U.	range	Default Value	Scalar / Vec-	Logical / Nu-
					tor	meric
RichardTol	Absolute Tolerance for the integration	mm	1E-20,	1.00E-	sca	num
	of Richards' equation on the Euclidean		inf	08		
	norm of residuals (mass balance)					
RichardMaxIter	Max iterations for the integration of	-	1, inf	100	sca	num
	Richards' equation (mass balance equa-					
	tion)					
RichardInitForc	Initial forcing term of Newton method	-		0.01	sca	num
	(mass balance equation)					

Table 14.6: Keywords of input numeric parameters for the energy and mass balance equation settable in geotop.inpts

14.2 Output

14.2.1 Point output

Files

Keyword	Description
PointOutputFile	name of the file providing the properties for the simulation
	point
PointOutputFileWriteEnd	name of the output file providing the Point values written
	just once at the end
SoilLiqWaterPressProfileFile	name of the output file providing the Soil/rock instanta-
	neous liquid water pressure head values at various depths
SoilLiqWaterPressProfileFileWriteEnd	name of the output file providing the Soil/rock instanta-
	neous liquid water pressure head values at various depths
	written just once at the end
SoilTotWaterPressProfileFile	name of the output file providing the Soil/rock instanta-
	neous total (water+ice) pressure head values at various
	depths
SoilTotWaterPressProfileFileWriteEnd	name of the output file providing the Soil/rock instanta-
	neous total (water+ice) pressure head values at various
	depths written just once at the end
SoilLiqContentProfileFile	name of the output file providing the Soil/rock instanta-
	neous liquid water content values at various depths
SoilLiqContentProfileFileWriteEnd	name of the output file providing the Soil/rock instanta-
	neous liquid water content values at various depths written
	just once at the end
SoilAveragedLiqContentProfileFile	name of the output file providing the Soil/rock average (in
	DtPlotPoint) liquid water content values at various depths
SoilAveragedLiqContentProfileFileWriteEnd	name of the output file providing the Soil/rock average (in
	DtPlotPoint) liquid water content values at various depths
	written just once at the end

Table 14.7: Keywords of output file related to soil

14. Soil/Rock Infiltration 14.2. Output

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
DefaultSoil	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
SoilPlotDepths	depth at which one wants the data on	m		NA	vec	num
	the snow to be plotted					
DateSoil	column number in which one	-		-1	sca	num
	would like to visualize the					
	Date12[DDMMYYYY hhmm]					
JulianDayFromYear0Soil	column number in which one	-		-1	sca	num
	would like to visualize the Julian-					
	DayFromYear0[days]					
TimeFromStartSoil	column number in which one would	-		-1	sca	num
	like to visualize the time from the					
	start of the soil					
PeriodSoil	Column number to write the period	-		-1	sca	num
	number					
RunSoil	Column number to write the run	-		-1	sca	num
	number					
IDPointSoil	column number in which one would	-		-1	sca	num
	like to visualize the IDpoint					

Table 14.8: Keywords defining the column number where to print the desired variable in the output files for the soil variables

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
DefaultPoint	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
DtPlotPoint	Plotting Time step (in hour) of the output	h	0, inf	0	vec	num
	for specified pixels (0 means the it is not					
	plotted)					
DatePoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Date12[DDMMYYYY					
	hhmm]					
JulianDayFromYear0Point	column number in which one	-	1, 76	-1	sca	num
	would like to visualize the Julian-					
	DayFromYear0[days]					
TimeFromStartPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the TimeFromStart[days]					
PeriodPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Simulation_Period					
RunPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Run					
IDPointPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the IDpoint					
WaterTableDepthPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the water_table_depth [mm]					

Table 14.9: Keywords defining the column number where to print the desired variable in the PointOutputFile

14.2.2 Map Output

14.2. Output 14. Soil/Rock Infiltration

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Str/Num / Opt
OutputSoilMaps	frequency (h) of printing of the results of the soil maps	h		0	sca	num

Table 14.10: Keywords of frequency for printing soil output maps

14.2.3 Map names

Keyword	Description
SoilMapFile	name of the file providing the soil map
FirstSoilLayerLiqContentMapFile	name of the map of the liquird water content of the first soil layer
LandSurfaceWaterDepthMapFile	name of the map of the water height above the surface
WaterTableDepthMapFile	name of the output file providing the Water table depth map
SpecificPlotSurfaceWaterContentMapFile	name of the output file providing the surface water content map at high
	temporal resolution during specific days

Table 14.11: Keywords of print output maps for soil and rock thermal and hydraulic variables

14.2.4 Tensor names

Keyword	Description
SoilLiqContentTensorFile	Name of the ensamble of raster maps corresponding to the liquid wa-
	ter content of each layer (if PlotSoilDepth≠0 it writes the value at the
	corresponding depths)
SoilLiqWaterPressTensorFile	Name of the ensamble of raster maps corresponding to the water pres-
	sure of each layer (if PlotSoilDepth $\neq 0$ it writes the value at the corre-
	sponding depths)

Table 14.12: Keywords of print output tensor maps for soil and rock thermal and hydraulic variables

14. Soil/Rock Infiltration 14.2. Output

Soil/rock temperature

15.1 Input

15.1.1 File

Keyword	Description	Associated file	type (file, header)
SoilParFile	name of the file providing the soil parameters	/	file

Table 15.1: Keywords of file related to soil and rock parameters

15.1.2 Headers

Keyword	Description	Associated file
HeaderPointSoilType	column name in the file PointFile for the soil type of the point	PointFile
HeaderSoilDz	column name in the file SoilParFile for the layers thickness	SoilParFile
HeaderKthSoilSolids	column name in the file thermal conductivity of the soil grains	SoilParFile
HeaderCthSoilSolids	column name in the file thermal capacity of the soil grains	SoilParFile

Table 15.2: Keywords of headers related to soil

15.1.3 Parameters

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
ThermalConductivitySoilSolidsBedrock	thermal conductivity of the	$\mathrm{W}~\mathrm{m}^{-1}$		2.5	vec	num
	bedrock	K^{-1}				
ThermalCapacitySoilSolidsBedrock	thermal capacity of the	$J m^{-3}$		1.00E+06	vec	num
	bedrock	K^{-1}				

Table 15.3: Keywords of soil input parameters settable in geotop.inpts

Numerics

15. Soil/rock temperature 15.2. Output

Keyword	Description	M. U.	range	Default	Scalar	Logical
				Value	/ Vec-	/ Nu-
					tor	meric
HeatEqTol	Max norm of the residuals (energy bal-	$\mathrm{J}\mathrm{m}^{-2}$		1.00E-	sca	num
	ance equation)			04		
HeatEqMaxIter	Max number of iterations (energy bal-	-		500	sca	num
	ance equation)					

Table 15.4: Keywords of input numeric parameters for the energy equation settable in geotop.inpts

15.2 Output

15.2.1 Point output

Files

Keyword	Description
PointOutputFile	name of the file providing the properties for the simulation point
PointOutputFileWriteEnd	name of the output file providing the Point values written just once at
	the end
SoilTempProfileFile	name of the output file providing the Soil/rock instantaneous tempera-
	ture values at various depths
SoilTempProfileFileWriteEnd	name of the output file providing the Soil/rock instantaneous tempera-
	ture values at various depths written just once at the end
SoilAveragedTempProfileFile	name of the output file providing the Soil/rock average (in DtPlotPoint)
	temperature values at various depths
SoilAveragedTempProfileFileWriteEnd	name of the output file providing the Soil/rock average (in DtPlotPoint)
	temperature values at various depths written just once at the end
SoilIceContentProfileFile	name of the output file providing the Soil/rock instantaneous ice con-
	tent values at various depths
SoilIceContentProfileFileWriteEnd	name of the output file providing the Soil/rock instantaneous ice con-
	tent values at various depths written just once at the end
SoilAveragedIceContentProfileFile	name of the output file providing the Soil/rock average (in DtPlotPoint)
	ice content values at various depths
SoilAveragedIceContentProfileFileWriteEnd	name of the output file providing the Soil/rock average (in DtPlotPoint)
	ice content values at various depths written just once at the end

Table 15.5: Keywords of output file related to soil

Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
DefaultSoil	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
SoilPlotDepths	depth at which one wants the data on	m		NA	vec	num
	the snow to be plotted					
DateSoil	column number in which one	-		-1	sca	num
	would like to visualize the					
	Date12[DDMMYYYY hhmm]					
JulianDayFromYear0Soil	column number in which one	-		-1	sca	num
	would like to visualize the Julian-					
	DayFromYear0[days]					
	continued on nex	t page		·		

15.2. Output 15. Soil/rock temperature

continued from previous page						
Keyword	Description	M. U.	range	Default	Sca /	Str/Num
				Value	Vec	/ Opt
TimeFromStartSoil	column number in which one would	-		-1	sca	num
	like to visualize the time from the					
	start of the soil					
PeriodSoil	Column number to write the period	-		-1	sca	num
	number					
RunSoil	Column number to write the run	-		-1	sca	num
	number					
IDPointSoil	column number in which one would	-		-1	sca	num
	like to visualize the IDpoint					

Table 15.6: Keywords defining the column number where to print the desired variable in the output files for the soil variables

Keyword	Description	M. U.	range	Default	Sca /	Log /
				Value	Vec	Num
DefaultPoint	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
DtPlotPoint	Plotting Time step (in hour) of the output	h	0, inf	0	vec	num
	for specified pixels (0 means the it is not					
	plotted)					
DatePoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Date12[DDMMYYYY					
	hhmm]					
JulianDayFromYear0Point	column number in which one	-	1, 76	-1	sca	num
	would like to visualize the Julian-					
	DayFromYear0[days]					
TimeFromStartPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the TimeFromStart[days]					
PeriodPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Simulation_Period					
RunPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the Run					
IDPointPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the IDpoint					
ThawedSoilDepthPoint	column number in which one would like	-	1, 76	-1	sca	num
	to visualize the thawed_soil_depth [mm]					

Table 15.7: Keywords defining the column number where to print the desired variable in the PointOutputFile

15.2.2 Map Output

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Str/Num /Opt
OutputSoilMaps	frequency (h) of printing of the re-	h		0	sca	num
	sults of the soil maps					

Table 15.8: Keywords of frequency for printing soil output maps

15. Soil/rock temperature 15.2. Output

15.2.3 Map names

Keyword	Description
SoilMapFile	name of the file providing the soil map
FirstSoilLayerTempMapFile	name of the map of the temperature of the first soil layer
FirstSoilLayerAveragedTempMapFile	name of the map of the average temperature of the first soil layer
ThawedDepthMapFile	name of the output file providing the Thawed soil depth map
FrostTableDepthMapFile	name of the output file providing the Frost table depth map

Table 15.9: Keywords of print output maps for soil and rock thermal and hydraulic variables

15.2.4 Tensor names

Keyword	Description
SoilTempTensorFile	Name of the ensamble of raster maps corresponding to the temperature
	of each layer (if PlotSoilDepth≠0 it writes the value at the correspond-
	ing depths)
SoilAveragedTempTensorFile	Name of the ensamble of raster maps corresponding to the average tem-
	perature of each layer (if PlotSoilDepth≠0 it writes the value at the
	corresponding depths)
IceLiqContentTensorFile	Name of the ensamble of raster maps corresponding to the average ice
	content of each layer (if PlotSoilDepth $\neq 0$ it writes the value at the cor-
	responding depths)

Table 15.10: Keywords of print output tensor maps for soil and rock thermal and hydraulic variables

Discharge at the outlet

16.1 Input

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
SurFlowResLand	(C_m) : coefficient of of the law of uniform motion on the surface $(v_{sup} = C_m \cdot h_{sup}^{\gamma} \cdot i_{DD}^{0.5}), \gamma$ defined below	$s^{1-\gamma}$	0.01, 5.0	0.5	sca	num
SurFlowResExp	(γ): Exponent of the law of uniform motion on the surface $v = C_m \cdot h_{sup}^{\gamma} \cdot i^{0.5}$	-	0.25 - 0.34	0.67	sca	num
ThresWaterDepthLandDown	h_{sup} : Threshold below which C_m is 0 (water does not flow on the surface)	mm		0	sca	num
ThresWaterDepthLandUp	h_{sup} : Threshold above which C_m is independent from h_{sup} (= fully developed turbulence)	mm		50	sca	num
SurFlowResChannel	Resistance coefficient for the channel flow (the same γ for land surface flow is used)	$s^{1-\gamma}$		20	sca	num
ThresWaterDepthChannelUp	h_{sup} Threshold above which C_m is independent from h_{sup} (= fully developed turbulence).	mm		50	sca	num
RatioChannelWidthPixelWidth	Fraction of channel width in the pixel width	-		0.1	sca	num
ChannelDepression	Depression of the channel bed with respect to the neighboring slopes. It is used to change between free and submerged weir flow model to represent to surface flow to the channel	mm		500	sca	num
MinSupWaterDepthLand	minimum surface water depth on the earth below which the Courant condition is not applied	mm		1	sca	num
MinSupWaterDepthChannel	minimum surface water depth on the channel below which the Courant condition is not applied	mm		1	sca	num

Table 16.1: Keywords on input parameters to describe surface water flow on land and channel

16. Discharge at the outlet 16.2. Output

Keyword	Description	M. U.	range	Default	Scalar	Logical
				Value	/ Vec-	/ Nu-
					tor	meric
MinTimeStepSupFlow	minimum integration time step for the			0.01	sca	num
	integration (surface flow equation)					

Table 16.2: Keywords of input numeric parameters for the surface water balance equation settable in geotop.inpts

16.2 Output

16.2.1 Point

Files

Keyword	Description
DischargeFile	name of the file providing the discharge values at the outlet

Table 16.3: Keywords of file related to point output variables

Keyword	Description	M. U.	range	Default	Sca /	Log /
				Value	Vec	Num
DtPlotDischarge	Plotting Time step (in hour) of the water discharge (0 means the it is not		0, inf	0	vec	num
	plotted)					

Table 16.4: Keywords defining which parameter to print on the DischargeFile

Basin synthetic outputs

17.1 Output

17.1.1 Files

Keyword	Description
BasinOutputFile	name of the output file providing the Basin values
BasinOutputFileWriteEnd	name of the output file providing the Basin values written just once at the end

Table 17.1: Keywords of file name for the synthetic basin outputs

17.1.2 Parameters

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
DefaultBasin	0: use personal setting, 1:use default	-	0, 1	1	sca	opt
DtPlotBasin	Plotting Time step (in hour) of THE basin averaged output (0 means the it is not plotted)	h	0, inf	0	vec	num
DateBasin	column in which one would like to visualize the Date12 [DDM- MYYYYhhmm]	-	1, 24	-1	sca	num
JulianDayFromYear0Basin	column in which one would like to visualize the Julian- DayFromYear0[days]	-	1, 24	-1	sca	num
TimeFromStartBasin	column in which one would like to visualize the TimeFromStart[days]	-	1, 24	-1	sca	num
PeriodBasin	column in which one would like to visualize the Simulation_Period	-	1, 24	-1	sca	num
RunBasin	column in which one would like to visualize the Run	-	1, 24	-1	sca	num
PRainNetBasin	column in which one would like to visualize the Prain_below_canopy[mm]	-	1, 24	-1	sca	num
PSnowNetBasin	column in which one would like to visualize the Psnow_below_canopy[mm]	-	1, 24	-1	sca	num
	continued on nex	t page				

17. Basin synthetic outputs 17.1. Output

	continued from previous	ious page				
Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
PRainBasin	column in which one would like to visualize the Prain_above_canopy[mm]	-	1, 24	-1	sca	num
PSnowBasin	column in which one would like to visualize the Prain_above_canopy[mm]	-	1, 24	-1	sca	num
AirTempBasin	column in which one would like to visualize the Tair[°C]	-	1, 24	-1	sca	num
TSurfBasin	column in which one would like to visualize the Tsurface[°C]	-	1, 24	-1	sca	num
TvegBasin	column in which one would like to visualize the Tvegetation[°C]	-	1, 24	-1	sca	num
EvapSurfaceBasin	column in which one would like to visualize the Evap_surface[mm]	-	1, 24	-1	sca	num
TraspCanopyBasin	column in which one would like to visualize the Transpira- tion_canopy[mm]	-	1, 24	-1	sca	num
LEBasin	column in which one would like to visualize the LE[W/m ²]	-	1, 24	-1	sca	num
HBasin	column in which one would like to visualize the H[W/m ²]	-	1, 24	-1	sca	num
SWNetBasin	column in which one would like to visualize the SW[W/m²]	-	1, 24	-1	sca	num
LWNetBasin	column in which one would like to visualize the LW[W/m²]	-	1, 24	-1	sca	num
LEvBasin	column in which one would like to visualize the LEv[W/m²]	-	1, 24	-1	sca	num
HvBasin	column in which one would like to visualize the Hv[W/m ²]	-	1, 24	-1	sca	num
SWvBasin	column in which one would like to visualize the SWv[W/m ²]	-	1, 24	-1	sca	num
LWvBasin	column in which one would like to visualize the LWv[W/m ²]	-	1, 24	-1	sca	num
SWinBasin	column in which one would like to visualize the SWin[W/m²]	-	1, 24	-1	sca	num
LWinBasin	column in which one would like to visualize the LWin[W/m²]	-	1, 24	-1	sca	num
MassErrorBasin	column in which one would like to visualize the Mass_balance_error[mm]	-	1, 24	-1	sca	num

Table 17.2: Keywords of print parameters to personalize the BasinOutputFile

17.1.3 Headers

Keyword	Description	Associated file		
HeaderDateBasin	column name in the file BasinOutputFile for the	BasinOutputFile		
	variable DateBasin			
HeaderJulianDayFromYear0Basin	column name in the file BasinOutputFile for the	BasinOutputFile		
	variable JulianDayFromYear0Basin			
HeaderTimeFromStartBasin	column name in the file BasinOutputFile for the	BasinOutputFile		
	variable TimeFromStartBasin			
continued on next page				

17.1. Output 17. Basin synthetic outputs

	continued from previous page	
Keyword	Description	Associated file
HeaderPeriodBasin	column name in the file BasinOutputFile for the variable PeriodBasin	BasinOutputFile
HeaderRunBasin	column name in the file BasinOutputFile for the variable RunBasin	BasinOutputFile
HeaderPRainNetBasin	column name in the file BasinOutputFile for the variable PRainNetBasin	BasinOutputFile
HeaderPSnowNetBasin	column name in the file BasinOutputFile for the variable PSnowNetBasin	BasinOutputFile
HeaderPRainBasin	column name in the file BasinOutputFile for the variable PRainBasin	BasinOutputFile
HeaderPSnowBasin	column name in the file BasinOutputFile for the variable PSnowBasin	BasinOutputFile
HeaderAirTempBasin	column name in the file BasinOutputFile for the variable AirTempBasin	BasinOutputFile
HeaderTSurfBasin	column name in the file BasinOutputFile for the variable TSurfBasin	BasinOutputFile
HeaderTvegBasin	column name in the file BasinOutputFile for the variable TvegBasin	BasinOutputFile
HeaderEvapSurfaceBasin	column name in the file BasinOutputFile for the variable EvapSurfaceBasin	BasinOutputFile
HeaderTraspCanopyBasin	column name in the file BasinOutputFile for the variable TraspCanopyBasin	BasinOutputFile
HeaderLEBasin	column name in the file BasinOutputFile for the variable LEBasin	BasinOutputFile
HeaderHBasin	column name in the file BasinOutputFile for the variable HBasin	BasinOutputFile
HeaderSWNetBasin	column name in the file BasinOutputFile for the variable SWNetBasin	BasinOutputFile
HeaderLWNetBasin	column name in the file BasinOutputFile for the variable LWNetBasin	BasinOutputFile
HeaderLEvBasin	column name in the file BasinOutputFile for the variable LEvBasin	BasinOutputFile
HeaderHvBasin	column name in the file BasinOutputFile for the variable HvBasin	BasinOutputFile
HeaderSWvBasin	column name in the file BasinOutputFile for the variable SWvBasin	BasinOutputFile
HeaderLWvBasin	column name in the file BasinOutputFile for the variable LWvBasin	BasinOutputFile
HeaderSWinBasin	column name in the file BasinOutputFile for the variable SWinBasin	BasinOutputFile
HeaderLWinBasin	column name in the file BasinOutputFile for the variable LWinBasin	BasinOutputFile
HeaderMassErrorBasin	column name in the file BasinOutputFile for the variable MassErrorBasin	BasinOutputFile

Table 17.3: Keywords of headers to personalize the column names of the BasinOutputFile

17. Basin synthetic outputs 17.1. Output

Boundary and Initial Conditions

18.1 Boundary Conditions

18.1.1 Energy balance equation

Dirichlet

Keyword	Description	M. U.	range	Default	Sca /	Log /
				Value	Vec	Num
ZeroTempAmplitDepth	Zero annual amplitude depth (ZAA): depth at which the annual temperature remains constant. It is used as the bottom boundary condition of the heat equation. The Zero flux condition can be assigned setting this parameter at a very high value	mm		1.00E+20	sca	num
ZeroTempAmplitTemp	Temperature at the depth assigned above	°C		20	sca	num

Table 18.1: Keywords of boundary condition for the energy balance equation

Neumann

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
BottomBoundaryHeatFlux	Incoming heat flux at the bot-	$\mathrm{W}\mathrm{m}^{-2}$		0	sca	num
	tom boundary of the soil domain					
	(geothermal heat flux)					

Table 18.2: Keywords of boundary condition for the energy balance equation

18.1.2 Water balance equation

Neumann

Keyword	Description	M. U.	range	Default Value	Sca / Vec	Log / Num
				value	vec	Num
FreeDrainageAtBottom	Boundary condition on Richards'	-	0,1	0	sca	num
	equation at the bottom border (1:					
	free drainage, 0: no flux)					
FreeDrainageAtLateralBorder	Boundary condition on Richards'	-	0,1	1	sca	num
	equation at the lateral border (1:					
	free drainage, 0: no flux)					
PointDepthFreeSurface	depth of the trench that simu-	mm		NA	vec	num
	lates the drainage of a soil column					
	through a weir. The deeper the					
	trench, the higher the drainage.					
	Valid in 1D simulations					

Table 18.3: Keywords of boundary condition for the energy balance equation

18.2 Initial Conditions

18.2.1 Snow

Keyword	Description	M. U.	range	Default Value	Scalar / Vector	Log / Num
InitSWE	Initial snow water equivalent (SWE) - used if no snow map is given	kg m ⁻²		0	sca	num
InitSnowDensity	Initial snow density - uniform with depth	kg m ⁻³		200	sca	num
InitSnowTemp	Initial snow temperature - uniform with depth	°C		-3	sca	num
InitSnowAge	Initial snow age	days		0	sca	num

Table 18.4: Keywords for the input of initial conditions

18.2.2 Glacier

Keyword	Description	M. U.	range	Default	Scalar /	Log /
				Value	Vector	Num
InitGlacierDepth	Initial glacier depth - used if no	mm		0	sca	num
	snow map is given					
InitGlacierDensity	Initial glacier density - uniform	${\rm kg}~{\rm m}^{-3}$		800	sca	num
	with depth					
InitGlacierTemp	Initial glacier temperature - uniform	°C		-3	sca	num
	with depth					

Table 18.5: Keywords for the input of initial conditions

18.2.3 Soil / Rock

Water balance equation

Keyword	Description	M. U.	range	Default	Scalar /	Log /
				Value	Vector	Num
InitWaterTableHeightOverTopoSurface	initial condition on water table depth (positive down- wards from ground surface). Used if InitSoilPressure is void	mm		0	sca	num
InitSoilPressure	void	mm		NA	vec	num
InitSoilPressureBedrock		mm		NA	vec	num

Table 18.6: Keywords for the input of initial conditions

Energy balance equation

Keyword	Description	M. U.	range	Default Value	Scalar / Vector	Log / Num
IInitSoilTemp		°C		5	vec	num
InitSoilTempBedrock		°C		5	vec	num

Table 18.7: Keywords for the input of initial conditions settable in geotop.inpts

Templates

In order to introduce the user to a first use of the model, two examples are provided to illustrate how to start a simulation and obtain results. The key ideas embedded in the input-out structure are flexibility and self-explanatory names for variables and files.

All input-output parameters and the simulation control parameters are given in the itgeotop.inpts file. A log-file is generated as a track of the simulation, it summarizes the parameter set chosen for the simulation and the time evolution, i.e. the percentage of simulation completed and the amount of time required to complete it. If the simulation is long or convergency problems are encountered, this file can be very large. If the simulation is completed a SUCCESSFUL-RUN empty file is created, alternatively a FAILED file is printed out. If the simulation is rerun new files are generated and old files are renamed with .old

Default values are assigned to several variables, assuming the simulation is 3D, if the users wants to change the default status, appropriate flags need to be assigned.

19.1 1D simulation

Some processes are mainly 1-dimensional, therefore they can be investigated using GEOtop in a simplified manner. In such a way the computational domain is reduced to one vertical column aligned to a Cartesian grid. Processes related to soil temperature and snow profiles can be studied in one dimension.

Input-output and controlling simulation parameters are assigned in the *geotop.inpts* file, together with the keyword specific for the 1D simulation. In order to traduce a real case study into a scheme that can be handed by the model, the following elements have to be set:

- computational domain;
- initial conditions;
- boundary conditions;
- meteorological forcing;
- soil and snow thermic parameters.

The **computational domain** is set assigning the number of layers and their thickness in the SOIL PARAMETERS block (SoilLayerThicknesses).

The **initial conditions** can be assigned to soil, snow, watertable, ice and bedrock (Table 19.1). Initial conditions on soil temperature are assigned through the InitSoilTemp parameter in the SOIL PARAMETERS block, the initial conditions on snow are assigned through four parameters initial snow water equivalent (InitSWE), initial snow density (InitSnowdensity), initial snow temperature (InitSnowTemp), initial snow age (InitSnowAge). The initial watertable height can be defined through the InitWaterTable-HeightOverTopoSurface parameter, which takes negative value if the soil in unsaturated and 0 if it is saturated. Initial condition on ice depth, temperature and ice density can be set through the corresponding parameters InitGlacierDepth, InitGlacierDensity and InitGlacierTemp.

Dirichlet **boundary conditions** are assigned at the bottom boundary of the computational domain by setting the depth at which the temperature fluctuation due to external forcing is zero (ZeroTempAmplitDepth) and providing the constant temperature at such a depth (ZeroTempAmplitTemp). Both parameters can be found in the ENERGY BALANCE PARAMETERS block. Boundary conditions for the mass balance (Richards equation) are set by default to no flux (as reported in the log-file).

Meteorological forcing are assigned through the meteo-file, the horizon meteo-file and some parameters which specify the characteristic of the meteorological station and the sensor height in the METEO PARAMETERS block. There is one horizonmeteo file per meteorological station; they can be present to improve the shadow calculation. It describes the obstacles around the station in terms of two angles; one describes the angle on an horizontal plane between the North and the object; the other angle describes the height of the object along the vertical plane.

19. Templates 19.1. 1D simulation

	Physical variables	Parameter name
Soil	soil temperature	InitSoilTemp
	soil pressure	InitSoilPressure
Snow	snow water equivalent	InitSWE
	snow density	InitSnowDensity
	snow age	InitSnowAge
Ice	ice depth	InitGlacierDepth
	ice density	InitGlacierDensity
	ice temperature	InitGlacierTemp
Water	watertable depth	InitWaterTableHeightOverTopoSurface
	water pressure within the bedrock	InitSoilPressureBedrock
	temperature of the bedrock	InitSoilTempBedrock

Table 19.1: Synoptic table of the initial conditions

Soil and snow thermic parameters are assigned for each layer in the SOIL and SNOW block through several parameters such as soil thermal conductivity and capacity (ThermalConductivitySoilSolids, ThermalCapacitySoilSolids). In addition, land cover characteristic are given in the LAND COVER PARAMETERS block.

19.1.1 Parameter file: *geotop.inpts*

Parameters are organized in 10 blocks; they can be flags which enable or disable functionalities in the simulation, keywords or values. The 10 blocks are listed in the followings:

- 1. Base Parameters (Table 19.2). This block contains 4 parameters which define the integration interval, the simulated time through the initial and end dates and whether the simulation has to be run more than one time; 3 flags defining whether the water and/or the energy balance calculations have to be switch on (1) and whether the simulation is 1D. The default case is 3D simulation which corresponds to setting the *PointSim* to 0 or, alternatively, not using it. The last two parameters are defined by the users.
- 2. Input files and Headers (Table 19.3). This block contains the keywords which define the column names for some input files, such as the meteo file, the horizon meteo file and the list point file.
- 3. Meteo Parameters: define the characteristics of the meteorological station/s. (Figure 19.1)
- 4. Energy Balance Parameters (Table 19.4). These parameters are necessary to solve the energy balance equation.
- 5. Water Balance Parameters (Table 19.4). These parameters are necessary to solve the Richards equation.
- 6. Land Cover Parameters (Table 19.5). These parameters allow for the surface roughness, reflectivity and emissivity characterization.
- 7. Soil Parameters (Table 19.6). These parameters allow the user to characterize the soil both in terms of geometry (number of layers and thickness) and hydraulic properties (van Genucten [1980] parameters).
- 8. Snow Parameters (Table 19.7). These parameters allow for snow characterization.
- 9. Output in a Point and Output Time Series (Figure 19.3) allow the user to define which output has to be printed and in which format.

For additional details see Tables ... Add REF to keyword table.

19.1. 1D simulation

Parameter / Keyword / Flag	value
TimeStepEnergyAndWater	3600
InitDateDDMMYYYYhhmm	12/07/2010 00:00
EndDateDDMMYYYYhhmm	15/08/2010 23:00
NumSimulationTimes	1
WaterBalance	1
EnergyBalance	1
PointSim	1
StandardTimeSimulation	0
DtPlotPoint	1

Table 19.2: Base Parameters.

Parameter / Keyword / Flag	value
PointFile	"listpoints"
HeaderPointElevation	"ele"
HeaderPointSlope	"slp"
HeaderPointAspect	"asp"
HeaderPointSkyViewFactor	"sky"
HeaderPointMaxSWE	"swe"
MeteoFile	"meteo"
HeaderDateDDMMYYYYhhmmMeteo	"date"
HeaderWindVelocity	"WindS"
HeaderWindDirection	"WindDir"
HeaderWindX	"WindX"
HeaderWindY	"WindY"
HeaderRH	"RelHum"
HeaderAirTemp	"AirT"
HeaderSWglobal	"SWglobal"
HeaderIPrec	"Iprec"
HeaderCloudSWTransmissivity	"CloudTrans"
HorizonMeteoStationFile	"horizonmeteo"
HeaderHorizonAngle	"Angle"
HeaderHorizonHeight	"Height"

Table 19.3: Input files and headers

Energy balance		Water balance	
Parameter / Keyword / Flag	value	Parameter / Keyword / Flag	value
LWinParameterization	9	FrozenSoilHydrCondReduction	2
MoninObukhov	1	RichardTol	1.E-8
HeatEqTol	1.E-5	RichardMaxIter	500
HeatEqMaxIter	500	RichardInitForc	0.01
ZeroTempAmplitDepth	20100		
ZeroTempAmplitTemp	-1.25		

Table 19.4: Parameters used for solving the energy balance and Richards equation.

19.1. 1D simulation

Parameter / Keyword / Flag	value
SoilRoughness	100
ThresSnowSoilRough	5
AlbExtParSnow	3
SoilAlbVisDry	0.5
SoilAlbNIRDry	0.5
SoilAlbVisWet	0.5
SoilAlbNIRWet	0.5
SoilEmissiv	0.96

Table 19.5: Land cover characterization parameters

Parameter / Keyword / Flag	value
SoilLayerTypes	1
InitWaterTableHeightOverTopoSurface	-3000
SoilLayerThicknesses	100,100,100,
InitSoilTemp	0.34, 0.15, -0.03,
VerticalHydrConductivity	0.0001
ThetaRes	0
ThetaSat	0.2,0.2,0.2,0
AlphaVanGenuchten	0.0436,0.0436,0.0436,
NVanGenuchten	1.51,1.51,1.51,
ThermalConductivitySoilSolids	2.3
ThermalCapacitySoilSolids	2.3E+06

Table 19.6: Soil characterization parameters

19.1. 1D simulation 19. Templates

value
0.96
0.72
0
0
180
-3
0
5
3
5, 30, 120, 5, 5
20, 100, 10000, 100, 50
1
1.6
25
70
-150
0.65
2
-1
0.94
0.1
0.9
0.65
0.02
0.7
1
100
1.5
1.E6
1.E2

Table 19.7: Snow characterization parameters

19. Templates 19.1. 1D simulation

19.1.2 Input files

The input files required to run a 1D-simulation in addition to the *geotop.inpts* file are the followings:

- meteo file;
- horizon meteo file;
- list point.

The **meteo file** contains a time series of meteorological data. If data for more stations are available, one meteo file per station needs to prepared before a simulation can be run; the same holds for the horizionfile. Using the meteo parameters in the *geotop.inpts* file the user can specify the number of stations and their characteristics, e.g. location, elevation, sky view factor, time shift with respect to UTC if any and sensors height. In case of more stations, scalar values are substituted by vectors (Figure 19.1). For flexibility purposes the user can specify the columns name of the meteo file through the keywords provided in the Input files and Header block in the *geotop.inpts* file, as shown in Figure 19.2. The quoted names to the right can be changed at the user's convenience. The same concept applies to the horizon meteo and list point files, whose column names can be defined through appropriate keywords (Figure 19.2).

The **horizon file** it describes the obstacles around the station in terms of two angles; one describes the angle on an horizontal plane between the North and the object; the other angle describes the height of the object along the vertical plane.

The **list point** file describes the morphological features of the points where the simulation is performed. If more than one point are listed in this file the simulation is run simultaneously run at multiple points. The features that have to be provided for each point are the point identification number, the elevation, the local slope, the aspect and the sky view factor.

```
METEO PARAMETERS
                                                          METEO PARAMETERS
NumberOfMeteoStations =1
                                                       NumberOfMeteoStations =3
                                                       Latitude = 45.55000,45.15000,45.85000
Latitude = 45.55000
                                                       Longitude= 7.41000,7.11000,7.21000
Longitude= 7.41000
                                                       MeteoStationElevation = 3100,2900,2000
MeteoStationElevation = 3100
                                                       MeteoStationSkyViewFactor = 1,1,1
MeteoStationSkyViewFactor = 1
                                                       MeteoStationStandardTime = 0,0,0
MeteoStationStandardTime = 0
                                                       MeteoStationWindVelocitySensorHeight = 3,7,5
MeteoStationWindVelocitySensorHeight = 3
                                                       MeteoStationTemperatureSensorHeight = 3,2,2
MeteoStationTemperatureSensorHeight = 3
```

Figure 19.1: Example of meteo parameter sets, for one station on the left, for 3 station on right.

19.1.3 Output files

The number and the type of output that GEOtop prints out can be decided by the user through the DefaultPoint parameter. If this is set to 1, GEOtop prints out all possible output, as listed in Table ... Add REF to keyword table; alternatively, the user can specify which output wants GEOtop to print by setting the DefaultPoint parameter to 0. In this case the headers of the wanted output have to be specified as well (Figure 19.3). This section of the parameter file allows the user to change the column name and position in the output files by using the appropriate keyword. e.g. IDPointPoint will be printed on column 4 and labeled *chose a name*. In the example shown in Figure 19.3, 22 columns will be printed into the file named point, as specified by the PointOutputFileWriteEnd keyword. This name can be defined by the user. In the presented example two are the output files *point.txt* and *soiTave.txt*. This is an option that can be decided by the users and additional files can be printed on demand.

19.1. 1D simulation 19. Templates

```
INPUT FILES and HEADERS
PointFile = "listpoints"
HeaderPointElevation = "ele"
HeaderPointSlope
                        = "slp"
HeaderPointAspect
                      = "asp"
HeaderPointSkyViewFactor = "sky"
HeaderPointMaxSWE = "swe"
MeteoFile = "meteo"
HeaderDateDDMMYYYYhhmmMeteo = "date"
HeaderWindVelocity = "WindS"
HeaderWindDirection = "WindDir"
HeaderWindX = "WindX"
HeaderWindY = "WindY"
HeaderRH = "RelHum"
HeaderAirTemp = "AirT"
HeaderSWglobal = "SWglobal"
HeaderIPrec = "Iprec"
HeaderCloudSWTransmissivity = "CloudTrans"
HorizonMeteoStationFile = "horizonmeteo"
HeaderHorizonAngle = "Angle"
HeaderHorizonHeight = "Height"
```

Figure 19.2: Input file Headers block in the geotop.inpts file

19. Templates 19.1. 1D simulation

```
! OUTPUT in a POINT
DefaultPoint = 0
DatePoint = 1
JulianDayFromYear0Point = 2
RunPoint = 3
IDPointPoint = 4
HeaderIDPointPoint="chose a name"
AirTempPoint = 5
HeaderAirTempPoint = "TempAria"
SurfaceEBPoint = 6
SnowDepthPoint = 7
SWEPoint = 8
SnowMeltedPoint = 9
SWupPoint = 10
SWinPoint = 11
SWNetPoint = 12
SoilHeatFluxPoint = 13
TsurfPoint = 14
WindSpeedPoint = 15
PsnowPoint=16
PrainPoint=17
LWinPoint=18
LWNetPoint=19
LWupPoint=20
HupPoint=21
LEupPoint=22
   OUTPUT TIME SERIES
! File with the errors and warnings MANDATORY
PointOutputFileWriteEnd = "point"
SoilAveragedTempProfileFileWriteEnd = "soilTave"
```

Figure 19.3: Output blocks in the geotop.inpts file defining column header and their position in the output file

19.2. 3D distributed simulation 19. Templates

19.2 3D distributed simulation

GEOtop can reproduce physical processes which are mainly characterized by 3D-dynamics, such as snow melt in mountainous area, atmosphere-vegetation interactions and soil-atmosphere interaction (in bare soil), infiltration, water redistribution through the soil and stream discharge generation (Figure 19.4). Such processes required the topography of the study area to be given as input to the model and mass balance equation to solved in three dimensions (energy balance equation is solved 1D given the prevailing vertical fluxes to horizontal). GEOtop uses a 3D-structured grid as shown in Figure 19.5. In addition, to investigate interactions between atmosphere and vegetation, and between soil and atmosphere, distributed information on landcover and soil type are required.

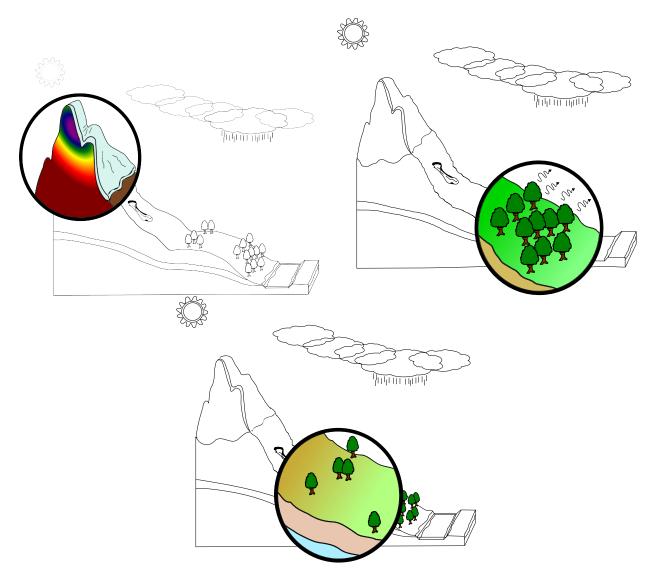


Figure 19.4: Physical processes typical of mountain hydrology which can be reproduced using a distributed, 3D model, such as GEOtop.

The example presented refers to a 2 day-run on a 0.7 km² alpine watershed. Data from only one station were available for this catchment. Soil type and landcover data were derived from satellite images and soil characterization (geomechanical properties and lithologic profiles) were derived from extensive field campaigns. In this respect GEOtop is a tool to handle post-processed Earth Observation (EO) data and distributed field data. The goal of this template is to show how the user can set up a distributed simulation.

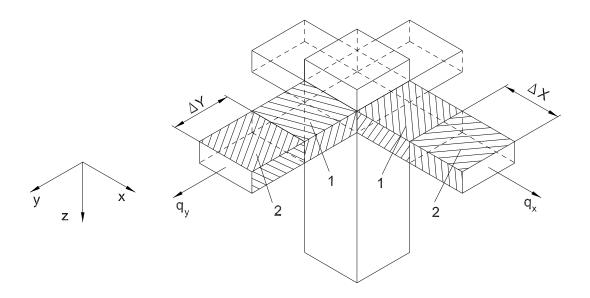


Figure 19.5: 3-dimensional grid structure implemented in GEOtop to solve the mass balance equation.

19.2.1 Parameter file

The structure of the parameter files is analogous to what previously illustrated for the 1D case with few additional keywords and parameters which need to be add in order to print out distribute and aggregated results, such as maps and stream flow, see Table 19.8. The *DtPloDischarge* parameter specifies the print out stream discharge time series time step in hours (1), the *OutputSoilMaps* parameter specifies the print out time step for the stream discharge time series (24 hours). The barycentric latitude and longitude for the watershed has to supplied.

value
3600
12/07/2010 00:00
15/08/2010 23:00
1
1
1
46.3
11.7
0
1
1
1
24
24
24
24

Table 19.8: Base Parameters for a 3D simulation. Units are specified in Table ADD REF TO KEYWORD TABLE

Raster file maps name have to be specified in the File names and Header parameters section as shown in Table 19.9. The number

19.2. 3D distributed simulation 19. Templates

of available meteorological stations and their characteristics have to be specified in the appropriate parameter section.

Parameter / Keyword / Flag	value
PointFile	"listpoints"
HeaderPointElevation	"ele"
HeaderPointSlope	"slp"
HeaderPointAspect	"asp"
HeaderPointSkyViewFactor	"sky"
HeaderPointMaxSWE	"swe"
MeteoFile	"meteo"
HeaderDateDDMMYYYYhhmmMeteo	"date"
HeaderWindVelocity	"WindS"
HeaderWindDirection	"WindDir"
HeaderWindX	"WindX"
HeaderWindY	"WindY"
HeaderRH	"RelHum"
HeaderAirTemp	"AirT"
HeaderSWglobal	"SWglobal"
HeaderIPrec	"Iprec"
HeaderCloudSWTransmissivity	"CloudTrans"
DEMfile	"dem"
LandCoverMapFile	"landcovermapfile"
SkyViewFactorMapFile	"0sky"
SlopeMapFile	"Oslope"
AspectMapFile	"Oaspect"
CurvaturesMapFile	"Ocurvature"
SoilMapFile	"soiltype"
SoilParFile	"soil/soil"

Table 19.9: Input files and headers for a spatially distributed simulation.

The number of landcover and soil type categories have to be specified in the appropriate parameter section. In case the soil in the watershed is not homogeneous, the number of different soil type can be assigned to the SoilLayerTypes parameter (see Table 19.10) and a description for each soil type has to be provided. This is done through files stored in a user defined path specified by the keyword *SoilParFile* (Table 19.9). Soil characterization files must contain information on the layer thickness, hydraulic conductivity, residual and saturated moisture content etc. as specified by the keywords in Table 19.10.

In addition to what already said for the 1D case, distributed **Initial conditions** (IC) can be assigned using raster maps associated with a specific keyword which specifies the path to the file. E.g. the IC on the water table depth can be assigned through the keyword *InitWaterTableHeightOverTopoSurfaceMapFile*, the IC on initial snow height and initial ice depth can be assigned through the keywords *InitSnowDepthMapFile* and *InitGlacierDepthMapFile*.

In addition to what already said for the 1D case, lateral **boundary conditions** can be assigned through the keyword *FreeDrainageAt-LateralBorder*.

19. Templates 19.2. 3D distributed simulation

Parameter / Keyword / Flag	value
SoilLayerTypes	28
InitWaterTableHeightOverTopoSurface	-1000
InitSoilTemp	5
ThermalConductivitySoilSolids	2.5
ThermalCapacitySoilSolids	2.3E6
HeaderSoilDz	"Dz"
HeaderLateralHydrConductivity	"Kh"
HeaderNormalHydrConductivity	"Kv"
HeaderThetaRes	"res"
HeaderFieldCapacity	"fc"
HeaderThetaSat	"sat"
HeaderAlpha	"a"
HeaderN	"n"
HeaderSpecificStorativity	"SS"

Table 19.10: Soil characterization parameters for a 3D simulation

```
! OUTPUT TIME SERIES
!----
DischargeFile = "tabs/discharge"
PointOutputFile = "tabs/point"
SnowProfileFile = "tabs/snow"
BasinOutputFile = "tabs/basin"
SoilAveragedTempProfileFile = "tabs/soilTave"
SoilAveragedTempTensorFile = "maps/T"
SoilLiqContentTensorFile = "maps/thetaliq"
IceLiqContentTensorFile = "maps/thetaice"
LandSurfaceWaterDepthMapFile = "maps/hsup"
SurfaceHeatFluxMapFile = "maps/EB"
SurfaceSensibleHeatFluxMapFile = "maps/H"
SurfaceLatentHeatFluxMapFile = "maps/LE"
SurfaceTempMapFile = "maps/Ts"
SoilLiqWaterPressTensorFile = "maps/pressure"
ThawedDepthMapFile = "maps/thawed"
WaterTableDepthMapFile = "maps/watertable"
SWEMapFile= "maps/SWE"
SnowDepthMapFile = "maps/snowdepth"
PrecipitationMapFile = "maps/Prec"
AirTempMapFile = "maps/Ta"
WindSpeedMapFile = "maps/WindSpeed"
WindDirMapFile = "maps/WindDir"
RelHumMapFile = "maps/RH"
```

Figure 19.6: Keyword setting for output files.

19.2. 3D distributed simulation 19. Templates

The raster maps and input files which are strictly required to run a distributed simulation are the following:

19.2.2 Input maps and files

- Digital Elevation Model DEM.
- Landcover map
- Soiltype map and a file characterizing each different soil type (Figure 19.8).
- Time series of meteorological forcing.

To improve the quality of the simulation additional raster maps derived from geomorphological analysis of the DEM can be supplied. These maps detail the morphology of the watershed allowing for more reliable calculations. These maps are: slope and aspect maps, curvatures along specified directions and a drainage direction map. They can by computed through sounded hydrological routines such as the Horton Machines ADD REFERENCES.

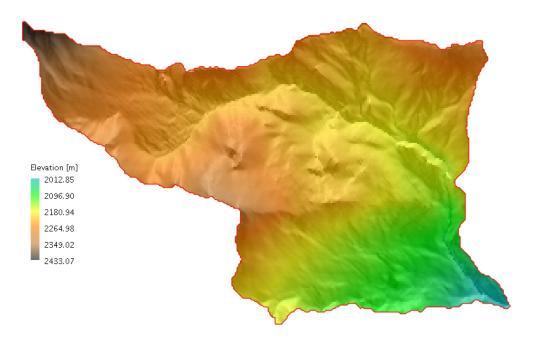


Figure 19.7: Digital elevation map of the investigated watershed.

```
Dz,Kh,Kv,res,fc,sat,a,n,SS
280,1.00E-07,1.00E-07,0,0.03,0.06,0.004,1.3,1.00E-06
500,1.00E-07,1.00E-07,0,0.03,0.06,0.004,1.3,1.00E-07
2000,1.00E-07,1.00E-07,0,0.03,0.06,0.004,1.3,1.00E-
```

Figure 19.8: Example of a soil type characterization file

The map resolution play an important role on the computational time therefore a trade-off between precision and the computational time has to be defined by the users. As a figure, the DEM used in this example is 5m resolution and counts 55648 cells in total.

19.2.3 Outputs

GEOtop can yield two types of different outputs:

- raster maps
- time series (discharge, air temperature, evaporation, latent heat fluxes, etc.....) at specific points (Figure 19.10).

The output raster maps (Figure 19.9) have to be specified by the user through appropriate keywords in the parameter file (see Table 19.9), in addition, their output frequency has to be assigned through the *OutputXXXMaps* parameter.

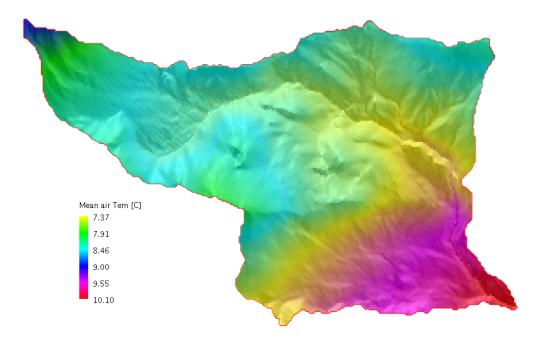


Figure 19.9: One of the many distributed output, the mean air temperature

19.2. 3D distributed simulation 19. Templates

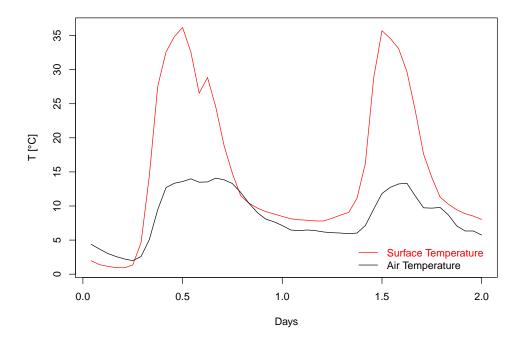


Figure 19.10: Two day-time series of mean air temperature output for a specified point

Index

AirPressPoint, 44	DepthGlac, 49
AirTempBasin, 84	DepthSnow, 55
AirTempMapFile, 45	DewTempOrNormTemp, 51
AirTempPoint, 44	DirectInShortwaveRadiationMapFile, 67
AlbExtParSnow, 51	DrySnowDefRate, 52
AlphaSnow, 51	DtPlotBasin, 83
AlphaVanGenuchten, 72	DtPlotDischarge, 82
AlphaVanGenuchtenBedrock, 72	DtPlotPoint, 43, 49, 55, 59, 65, 74, 79
AspectMapFile, 31, 33	
	EndDateDDMMYYYYhhmm, 37
BasinOutputFile, 83	EnergyBalance, 38
BasinOutputFileWriteEnd, 83	EstoredCanopyPoint, 60
BedrockDepthMapFile, 33	EvapSurfaceBasin, 84
BlowingSnow, 52	EvapSurfacePoint, 66
BlowingSnowSoftLayerIceContent, 52	
BottomBoundaryHeatFlux, 87	FetchDown, 52
BusingerMaxIter, 58, 64	FetchUp, 52
	FieldCapacity, 72
CanDensSurface, 57	FieldCapacityBedrock, 72
CanopyFraction, 57	FirstSoilLayerAveragedTempMapFile, 80
CanopyFractionPoint, 60	FirstSoilLayerLiqContentMapFile, 75
CanopyInterceptedWaterMapFile, 61	FirstSoilLayerTempMapFile, 80
CanopyMaxIter, 58	FlagSkyViewFactor, 37
CanopyStabCorrection, 58	FormatOutputMaps, 38
ChannelDepression, 81	FreeDrainageAtBottom, 88
CoordinatePointX, 32, 35	FreeDrainageAtLateralBorder, 88
CoordinatePointY, 32, 35	FreshSnowReflNIR, 51
CurvaturesMapFile, 31, 33	FreshSnowReflVis, 51
CurvatureWeight, 42	FrostTableDepthMapFile, 80
CurvatureWeightD, 42	FrozenSoilHydrCondReduction, 72
CurvatureWeightI, 42	1 1020 mg chilif ar Conditionation, 72
	GlacDensityPoint, 50
d0vegPoint, 60	GlacDepthPoint, 50
DateBasin, 83	GlacMeltedPoint, 50
DateGlac, 49	GlacPlotDepths, 48, 50
DatePoint, 43, 49, 55, 59, 65, 74, 79	GlacSublPoint, 50
DateSnow, 55	GlacTempPoint, 50
DateSoil, 74, 78	GWEPoint, 50
DecayCoeffCanopy, 57	3 11 22 om, 00
DecayKCanopyPoint, 61	HBasin, 84
DefaultBasin, 83	HeaderAirPress, 41
DefaultGlac, 48, 50	HeaderAirPressPoint, 45
DefaultPoint, 43, 55, 59, 65, 74, 79	HeaderAirTemp, 41
DefaultSnow, 55, 56	HeaderAirTempBasin, 85
DefaultSoil, 74, 78	HeaderAirTempPoint, 45
DefaultSoilTypeChannel, 38	HeaderAlpha, 71
DefaultSoilTypeLand, 38	HeaderCanopyFractionPoint, 44
DemFile, 31	HeaderCloudFactor, 42
DensityGlac, 49	HeaderCloudSWTransmissivity, 41
DensityGrac, 49 DensitySnow, 55	HeaderCoordinatePointX, 31, 32, 34
Density Show, 33	Treater Coordinater Office, 31, 32, 34

HeaderCoordinatePointY, 31, 32, 34	HeaderLWin, 42
HeaderCthSoilSolids, 77	HeaderLWinBasin, 85
Headerd0vegPoint, 58	HeaderLWinMaxPoint, 65
HeaderDateBasin, 84	HeaderLWinMinPoint, 65
HeaderDateDDMMYYYYhhmmLapseRates, 42	HeaderLWinPoint, 65
HeaderDateDDMMYYYYhhmmMeteo, 41	HeaderLWNetBasin, 85
HeaderDateGlac, 48	HeaderLWNetPoint, 65
HeaderDatePoint, 44	HeaderLWupPoint, 65
HeaderDateSnow, 54 HeaderDecayKCanopyPoint, 59	HeaderLWvBasin, 85 HeaderLWvPoint, 59
HeaderDepthGlac, 48	HeaderMassErrorBasin, 85
HeaderDepthSnow, 54	HeaderMeteoStationCoordinateX, 40
HeaderDewTemp, 41	HeaderMeteoStationCoordinateX, 40
HeaderEstoredCanopyPoint, 58	HeaderMeteoStationElevation, 40
HeaderEvapSurfaceBasin, 85	HeaderMeteoStationLatitude, 40
HeaderEvapSurfacePoint, 59	HeaderMeteoStationLongitude, 40
HeaderFieldCapacity, 71	HeaderMeteoStationSkyViewFactor, 40
HeaderGlacDensityPoint, 48	HeaderMeteoStationStandardTime, 40
HeaderGlacDepthPoint, 48	HeaderN, 71
HeaderGlacMeltedPoint, 48	HeaderNormalHydrConductivity, 71
HeaderGlacSublPoint, 48	HeaderPeriodBasin, 85
HeaderGlacTempPoint, 48	HeaderPeriodGlac, 48
HeaderGWEPoint, 48	HeaderPeriodPoint, 44
HeaderHBasin, 85	HeaderPeriodSnow, 54
HeaderHgUnvegPoint, 59	HeaderPointAspect, 31
HeaderHgVegPoint, 59	HeaderPointCurvatureNortheastSouthwestDirection, 31
HeaderHorizonAngle, 30	HeaderPointCurvatureNorthSouthDirection, 31
HeaderHorizonHeight, 30	HeaderPointCurvatureNorthwestSoutheastDirection, 31
HeaderHPoint, 65	HeaderPointCurvatureWestEastDirection, 31
HeaderHupPoint, 65	HeaderPointDrainageLateralDistance, 31
HeaderHvBasin, 85	HeaderPointElevation, 30
HeaderHvPoint, 59	HeaderPointHorizon, 31
HeaderIceContentGlac, 48	HeaderPointID, 31, 32, 34
HeaderIceContentSnow, 54	HeaderPointLatitude, 31
HeaderIDMeteoStation, 40	HeaderPointLongitude, 31
HeaderIDPointGlac, 48	HeaderPointSkyViewFactor, 31
HeaderIDPointPoint, 44	HeaderPointSlope, 30
HeaderIDPointSnow, 54	HeaderPointSoilType, 71, 77 HeaderPRainBasin, 85
HeaderJPrec, 41 HeaderJulianDayfrom0Meteo, 41	
HeaderJulianDayFromYear0Basin, 84	HeaderPRainNetBasin, 85 HeaderPrainNetPoint, 45
HeaderJulianDayFromYear0Glac, 48	Header Prain On Snow Point, 45
HeaderJulianDayFromYear0Point, 44	HeaderPrainPoint, 44
HeaderJulianDayFromYear0Snow, 54	HeaderPSnowBasin, 85
HeaderKthSoilSolids, 77	HeaderPSnowNetBasin, 85
HeaderLapseRateDewTemp, 42	HeaderPsnowNetPoint, 54
HeaderLapseRatePrec, 42	HeaderPsnowPoint, 44
HeaderLapseRateTemp, 42	HeaderQAirPoint, 65
HeaderLateralHydrConductivity, 71	HeaderQSurfPoint, 65
HeaderLEBasin, 85	HeaderQVegPoint, 59
HeaderLEgUnvegPoint, 59	HeaderRH, 41
HeaderLEgVegPoint, 59	HeaderRHPoint, 45
HeaderLEPoint, 65	HeaderRunBasin, 85
HeaderLEupPoint, 65	HeaderRunGlac, 48
HeaderLEvBasin, 85	HeaderRunPoint, 44
HeaderLEvPoint, 59	HeaderRunSnow, 54
HeaderLObukhovCanopyPoint, 59	HeaderSnowDensityPoint, 54
HeaderLObukhovPoint, 65	HeaderSnowDepthPoint, 54
HeaderLSAIPoint, 58	HeaderSnowMeltedPoint, 54

HeaderSnowOnCanopyPoint, 59	HupPoint, 67
HeaderSnowSublPoint, 54	HvBasin, 84
HeaderSnowTempPoint, 54	HvPoint, 60
HeaderSoilDz, 71, 77	
HeaderSoilHeatFluxPoint, 65	IceContentGlac, 49
HeaderSpecificStorativity, 71	IceContentSnow, 55
HeaderSurfaceEBPoint, 65	IceLiqContentTensorFile, 80
HeaderSWbeamPoint, 65	IDPointGlac, 49
HeaderSWdiffPoint, 65	IDPointPoint, 43, 50, 56, 60, 66, 74, 79
HeaderSWdiffuse, 41	IDPointSnow, 55
HeaderSWdirect, 41	IDPointSoil, 74, 79
HeaderSWEBlownPoint, 54	IInitSoilTemp, 89
HeaderSWEPoint, 54	InitDateDDMMYYYYhhmm, 37
HeaderSWESublBlownPoint, 54	InitGlacierDensity, 88
HeaderSWglobal, 41	InitGlacierDepth, 88
HeaderSWinBasin, 85	InitGlacierTemp, 88
HeaderSWinPoint, 65	InitSnowAge, 88
HeaderSWnet, 42	InitSnowDensity, 88
HeaderSWNetBasin, 85	InitSnowTemp, 88
HeaderSWNetPoint, 65	InitSoilPressure, 89
HeaderSWupPoint, 65	InitSoilPressureBedrock, 89
HeaderSWvBasin, 85	InitSoilTempBedrock, 89
HeaderSWvPoint, 59	InitSWE, 88
HeaderTCanopyAirPoint, 58	InitWaterTableHeightOverTopoSurface, 89
HeaderTDewPoint, 45	InLongwaveRadiationMapFile, 67
HeaderTempGlac, 48	InShortwaveRadiationMapFile, 67
HeaderTempSnow, 54	Iobsint, 42
HeaderThetaRes, 71	IrriducibleWatSatGlacier, 47
HeaderThetaSat, 71	IrriducibleWatSatSnow, 51
HeaderTimeFromStartBasin, 84	JulianDayFromYear0Basin, 83
HeaderTimeFromStartGlac, 48	JulianDayFromYear0Glac, 49
HeaderTimeFromStartPoint, 44	JulianDayFromYear0Point, 43, 49, 55, 59, 66, 74, 79
HeaderTimeFromStartSnow, 54	JulianDayFromYear0Snow, 55
HeaderTraspCanopyBasin, 85	JulianDayFromYear0Soil, 74, 78
HeaderTraspCanopyPoint, 59	
HeaderTSurfBasin, 85	LandCoverMapFile, 31, 34
HeaderTsurfPoint, 45	LandSurfaceWaterDepthMapFile, 75
HeaderTvegBasin, 85	LapseRateDewTemp, 41
HeaderTvegPoint, 58	LapseRateFile, 39
HeaderV, 71	LapseRatePrec, 41
HeaderWatContentGlac, 48	LapseRateTemp, 41
HeaderWatContentSnow, 54	LateralHydrConductivity, 72
HeaderWaterOnCanopyPoint, 59	LateralHydrConductivityBedrock, 72
HeaderWiltingPoint, 71	Latitude, 32, 34
HeaderWindDirection, 41	LeafAngles, 57
HeaderWindDirPoint, 45	LEBasin, 84
HeaderWindSpeedPoint, 45	LEgUnvegPoint, 60
HeaderWindSpeedTopCanopyPoint, 59	LEgVegPoint, 60
HeaderWindVelocity, 41	LEPoint, 66
HeaderWindX, 41	LEupPoint, 67
HeaderWindY, 41	LEvBasin, 84
Headerz0vegPoint, 58	LEvPoint, 60
HeatEqMaxIter, 78	LObukhovCanopyPoint, 61
HeatEqTol, 78	LObukhovPoint, 66
HgUnvegPoint, 60	LocMaxIter, 58
HgVegPoint, 60	Longitude, 32, 34
HorizonMeteoStationFile, 39	LSAI, 57
HorizonPointFile, 18, 30	LSAIPoint, 60
HPoint, 66	LWinBasin, 84

	intCurvatureNorthSouthDirection, 30
	intCurvatureNorthwestSoutheastDirection, 30
	intCurvatureWestEastDirection, 30
	intDepthFreeSurface, 88
LWNetBasin, 84 Poi	intDrainageLateralDistance, 30
LWNetPoint, 66 Poi	intElevation, 29
LWupPoint, 67 Poi	intFile, 30, 32, 34
LWvBasin, 84 Poi	intHorizon, 30
LWvPoint, 60 Poi	intID, 32, 35
	intLandCoverType, 29
	intLatitude, 30
	intLongitude, 30
MaxSnowLayerNumber, 52 Poi	intMaxSWE, 53
MaxSnowPorosity, 52 Poi	intOutputFile, 43, 53, 58, 64, 73, 78
MaxWaterEqGlacLayerContent, 47 Poi	intOutputFileWriteEnd, 43, 53, 58, 64, 73, 78
MaxWaterEqSnowLayerContent, 52 Poi	intSim, 37
MeteoFile, 39 Poi	intSkyViewFactor, 30
3.5 6 1 6 11 77 80	intSlope, 29
	intSoilType, 29, 72
	RainBasin, 84
	RainNetBasin, 83
	ainNetPoint, 44
	ainOnSnowPoint, 44
	ainPoint, 43
	ecipitationMapFile, 45
	nowBasin, 84
	nowNetBasin, 83
	nowNetPoint, 44
	nowPoint, 43
MinSupWaterDepthChannel, 81	now rount, 43
	AirPoint, 66
	CanopyAirPoint, 60
	SurfPoint, 66
	VegPoint, 60
NetLongwaveRadiationMapFile, 67	oni, oo
	diationMapFile, 67
······································	inCorrFactor, 41
	tioChannelWidthPixelWidth, 81
•	ecoverSim, 38
	elHumMapFile, 45
	Imin, 41
	Point, 44
	chardInitForc, 73
, .	chardMaxIter, 73
· · · · · · · · · · · · · · · · · · ·	chardTol, 73
	verNetwork, 31, 33
	ootDepth, 57
-	oughElemDiam, 51
	oughElemXUnitArea, 51
	inBasin, 83
	ınGlac, 49
	inPoint, 43, 49, 56, 60, 66, 74, 79
D : ID : 00	inSnow, 55
B 1 161 16	inSoil, 74, 79
PeriodPoint, 43, 49, 55, 60, 66, 74, 79	moon, /+, /7
	vingPoints, 38
	adowFractionTimeMapFile, 67
	yViewFactorMapFile, 31, 33
	ppeMapFile, 31, 33
	opeWeight, 42
2	-F

CI W. 1 D 40	
SlopeWeightD, 42	SpecificPlotIncomingLongwaveRadMapFile, 68
SlopeWeightI, 42	SpecificPlotIncomingShortwaveRadMapFile, 68
SnowAgingCoeffNIR, 53	SpecificPlotNetSurfaceLongwaveRadMapFile, 68
SnowAgingCoeffVis, 53	SpecificPlotNetSurfaceShortwaveRadMapFile, 68
SnowCorrFactor, 52	SpecificPlotNetVegLongwaveRadMapFile, 61
SnowCoveredAreaFile, 53	SpecificPlotNetVegShortwaveRadMapFile, 61
SnowCURV, 52	SpecificPlotRelHumMapFile, 45
SnowDensityCutoff, 52	SpecificPlotSurfaceHeatFluxMapFile, 67
SnowDensityPoint, 56	SpecificPlotSurfaceLatentHeatFluxMapFile, 68
SnowDepthPoint, 56	SpecificPlotSurfaceSensibleHeatFluxMapFile, 68
SnowEmissiv, 51	SpecificPlotSurfaceTempMapFile, 45
SnowMeltedPoint, 56	SpecificPlotSurfaceWaterContentMapFile, 75
SnowOnCanopyPoint, 60	SpecificPlotTotalLatentHeatFluxMapFile, 68
SnowPlotDepths, 55, 56	SpecificPlotTotalSensibleHeatFluxMapFile, 68
SnowProfileFile, 53	SpecificPlotVegLatentHeatFluxMapFile, 61
SnowProfileFileWriteEnd, 53	SpecificPlotVegSensibleHeatFluxMapFile, 61
SnowRoughness, 52	SpecificPlotVegTempMapFile, 61
SnowSMAX, 52	SpecificPlotWindDirMapFile, 45
SnowSMIN, 52	SpecificPlotWindSpeedMapFile, 45
SnowSublPoint, 56	SpecificStorativity, 72
SnowTempPoint, 56	SpecificStorativityBedrock, 72
SnowViscosity, 52	StandardTimeSimulation, 37
SoilAlbNIRDry, 64	SurfaceEBPoint, 66
SoilAlbNIRWet, 64	SurfaceHeatFluxMapFile, 67
SoilAlbVisDry, 64	SurfaceLatentHeatFluxMapFile, 67
SoilAlbVisWet, 64	SurfaceSensibleHeatFluxMapFile, 67
,	•
SoilAveragedIceContentProfileFile, 78	SurfaceTempMapFile, 45
SoilAveragedIceContentProfileFileWriteEnd, 78	SurFlowResChannel, 81
SoilAveragedLiqContentProfileFile, 73	SurFlowResExp, 81
SoilAveragedLiqContentProfileFileWriteEnd, 73	SurFlowResLand, 81
SoilAveragedTempProfileFile, 78	SWbeamPoint, 66
SoilAveragedTempProfileFileWriteEnd, 78	SWdiffPoint, 66
SoilAveragedTempTensorFile, 80	SWEBlownPoint, 56
SoilEmissiv, 64	SWEPoint, 56
SoilHeatFluxPoint, 66	SWESublBlownPoint, 56
SoilIceContentProfileFile, 78	SWinBasin, 84
SoilIceContentProfileFileWriteEnd, 78	SWinPoint, 66
SoilLayerNumber, 33	SWNetBasin, 84
SoilLayerThicknesses, 33	SWNetPoint, 66
SoilLayerTypes, 38	SWupPoint, 67
SoilLiqContentProfileFile, 73	SWvBasin, 84
SoilLiqContentProfileFileWriteEnd, 73	SWvPoint, 60
SoilLiqContentTensorFile, 75	
SoilLiqWaterPressProfileFile, 73	TCanopyAirPoint, 60
SoilLiqWaterPressProfileFileWriteEnd, 73	TDewPoint, 44
SoilLiqWaterPressTensorFile, 75	TempGlac, 49
SoilMapFile, 31, 34, 75, 80	TempSnow, 55
SoilParFile, 71, 77	ThawedDepthMapFile, 80
SoilPlotDepths, 74, 78	ThawedSoilDepthPoint, 79
SoilRoughness, 64	ThermalCapacitySoilSolidsBedrock, 77
SoilTempProfileFile, 78	ThermalConductivitySoilSolidsBedrock, 77
SoilTempProfileFileWriteEnd, 78	ThetaRes, 72
SoilTempTensorFile, 80	ThetaResBedrock, 72
SoilTotWaterPressProfileFile, 73	ThetaSat, 72
SoilTotWaterPressProfileFileWriteEnd, 73	ThetaSatBedrock, 72
SpecialPlotBegin, 46	ThickerGlacLayers, 47
SpecialPlotEnd, 46	
-	ThickerSnowLayers, 52 ThreeSnowSoilPough, 53
SpecificPlotAboveVegAirTempMapFile, 61 SpecificPlotCanopyAirTempMapFile, 61	ThresSnowSoilRough, 53 ThresSnowVegDown, 53
эресты юсапорули тепірімаріче, от	THESSHOW VERDOWII, 33

INDEX INDEX

```
ThresSnowVegUp, 53
ThresTempRain, 51
ThresTempSnow, 51
ThresWaterDepthChannelUp, 81
ThresWaterDepthLandDown, 81
ThresWaterDepthLandUp, 81
TimeDependentVegetationParameterFile, 58
TimeFromStartBasin, 83
TimeFromStartGlac, 49
TimeFromStartPoint, 43, 49, 55, 59, 66, 74, 79
TimeFromStartSnow, 55
TimeFromStartSoil, 74, 79
TimeStepBlowingSnow, 52
TimeStepEnergyAndWater, 37
TimeStepsFile, 37
TraspCanopyBasin, 84
TraspCanopyPoint, 60
TsMaxIter, 58
TSurfBasin, 84
TsurfPoint, 44, 66
TvegBasin, 84
TvegPoint, 60
VegHeight, 57
VegReflectVis, 57
VegReflNIR, 57
VegSnowBurying, 57
VegTransNIR, 57
VegTransVis, 57
Vmin, 40
VMualem, 72
VMualemBedrock, 72
WatContentGlac, 49
WatContentSnow, 55
WaterBalance, 38
WaterEquivalentGlac, 49
WaterEquivalentSnow, 55
WaterOnCanopyPoint, 60
WaterTableDepthMapFile, 75
WaterTableDepthPoint, 74
WetSnowDefRate, 52
WiltingPoint, 72
WiltingPointBedrock, 72
WindDirMapFile, 45
WindDirPoint, 44
WindSpeedMapFile, 45
WindSpeedPoint, 44
WindSpeedTopCanopyPoint, 61
z0vegPoint, 60
ZeroTempAmplitDepth, 87
ZeroTempAmplitTemp, 87
```

Bibliography

- Bertoldi, G., R. Rigon, and T. M. Over (2006), Impact of watershed geomorphic characteristics on the energy and water budgets, *J. Hydromet.*, 7, 389–403.
- Bertoldi, G., C. Notarnicola, G. Leitinger, S. Endrizzi, M. Zebisch, S. Della Chiesa, and U. Tappeiner (2010), Topographical and ecohydrological controls on land surface temperature in an alpine catchment, *Ecohydrology*, 3(2), 189–204.
- Bradley, E. (1968), A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness, *Quart. J. Roy. Meteorol. Soc*, 94, 361–379.
- Brutsaert, W. (1982), Evaporation into the atmosphere: theory, history, and applications, D Reidel Pub Co.
- Chamberlain, A. (1966), Transport of gases to and from grass and grass-like surfaces, *Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences*, 290(1421), 236–265.
- Dall'Amico, M. (2010), Coupled water and heat transfer in permafrost modeling, Ph.D. thesis, Institute of Civil and Environmental Engineering, Universita' degli Studi di Trento, Trento. Available from http://eprints-phd.biblio.unitn.it/335/.
- Dall'Amico, M., S. Endrizzi, S. Gruber, and R. Rigon (2011a), A robust and energy-conserving model of freezing variably-saturated soil, *The Cryosphere*, 5, 469–484.
- Dall'Amico, M., S. Endrizzi, and R. Rigon (2011b), Snow mapping of an alpine catchment through the hydrological model GEOtop, in *Proceedings Conference Eaux en montagne, Lyon 16-17 mars*, pp. 255–261, Societe' hydroelectrique de France.
- Endrizzi, S. (2007), Snow cover modelling at local and distributed scale over complex terrain, Ph.D. thesis, Ph. D. dissertation, Institute of Civil and Environmental Engineering, Universita' degli Studi di Trento, Trento. Available from http://www.ing.unitn.it/ endrizzi/PhDthesis.pdf.
- Endrizzi, S., and P. Marsh (2010), Observations and modeling of turbulent βuxes during melt at the shrub-tundra transition zone 1: point scale variations, *Hydrology Research*, 41(6), 471–491.
- Endrizzi, S., W. L. B. Quinton, and P. Marsh (submitted), Modelling the spatial pattern of ground thaw in a small 2 basin in the arctic tundra, *Submitted to The Cryosphere*.
- Essery, R., L. Li, and J. Pomeroy (1999), A distributed model of blowing snow over complex terrain, *Hydrological Processes*, 13(14-15), 2423–2438.
- Fichtl, G., and G. McVehil (1970), Longitudinal and lateral spectra of turbulence in the atmospheric boundary layer at the Kennedy Space Center, *Journal of Applied Meteorology*, 9(1), 51–63.
- Gebremichael, M., R. Rigon, G. Bertoldi, and T. Over (2009), On the scaling characteristics of observed and simulated spatial soil moisture fields, *Nonlinear Processes in Geophysics*, 16, 141–150.
- Liston, G., and K. Elder (2006), A meteorological distribution system for high-resolution terrestrial modeling (MicroMet), *Journal of Hydrometeorology*, 7(2), 217–234.
- Noldin, I., S. Endrizzi, R. Rigon, and M. Dall'Amico (2010), Sistema di drenaggio di un ghiacciaio alpino: modello GEOtop, *Neve e Valanghe*, 69, 48–54.
- Pomeroy, J., D. Gray, and P. Landine (1993), The prairie blowing snow model: characteristics, validation, operation, *Journal of hydrology*(*Amsterdam*), *144*(1-4), 165–192.

BIBLIOGRAPHY
BIBLIOGRAPHY

Rigon, R., G. Bertoldi, and T. M. Over (2006), GEOtop: a distributed hydrological model with coupled water and energy budgets, *J. Hydromet.*, 7, 371–388.

- Sutton, O. (1953), Micrometeorology, McGraw-Hill London.
- YAMAMOTO, G., and A. SHIMANUKI (1964), Profiles of Wind and Temperature in the Lowest 250 Meters in Tokyo, *Science reports of the Tōhoku University*.
- Zanotti, F., S. Endrizzi, G. Bertoldi, and R. Rigon (2004), The GEOTOP snow module, *Hydrological Processes*, 18(18), 3667–3679.